bromodeoxycytidine has been researched along with Laryngeal-Neoplasms* in 1 studies
1 other study(ies) available for bromodeoxycytidine and Laryngeal-Neoplasms
Article | Year |
---|---|
Potentiation of halogenated pyrimidine radiosensitizers in human carcinoma cells by beta-lapachone (3,4-dihydro-2,2-dimethyl-2H-naphtho[1,2-b]pyran- 5,6-dione), a novel DNA repair inhibitor.
3,4-Dihydro-2,2-dimethyl-2H-naptho[1,2,-b]pyran-5,6-dione (beta-lapachone) is a novel DNA repair inhibitor. It was tested for synergistic X-ray-induced lethality in combination with several halogenated pyrimidine radiosensitizers. Logarithmic-phase growing human epidermoid laryngeal carcinoma (HEp-2) cells were allowed to incorporate pyrimidine analogues for 48 h (approximately two cell doublings) and then were X-irradiated and subjected to various posttreatments. beta-Lapachone synergistically increased the dose enhancement ratios (DERs) of all analogues screened, with the exception of the 2'-chloro derivative of 5-bromodeoxyuridine. For example, following 5-bromodeoxycytidine sensitization an X-ray DER value of 1.87 +/- 0.04 at 1% survival was increased to 3.51 +/- 0.42 due to a 4-h post-X-irradiation exposure to 4 microM beta-lapachone. Do and Dq values for halogenated pyrimidine-sensitized human epidermoid laryngeal carcinoma cells were decreased 1.4- to 5.4-fold and 1.4- to 4.0-fold, respectively. beta-Lapachone had little effect upon the cytotoxicities of unirradiated human epidermoid laryngeal carcinoma cells whether or not they were previously exposed to any of the halogenated pyrimidine radiosensitizers. beta-Lapachone treatment following X-irradiation of cells that had not incorporated a pyrimidine analogue exhibited DER values of 1.38 +/- 0.05 and 1.40 +/- 0.01 at 10 and 1% survival levels, respectively. beta-Lapachone enhanced the radiosensitization of deoxycytidine analogues to a greater extent than the structurally related deoxyuridine analogues. Greater DERs and lower Do and Dq values were found for deoxycytidine than for deoxyuridine analogue radiosensitizers following beta-lapachone treatment. This agent may improve presently used radiation therapies and enhance proposed strategies which utilize deoxycytidine analogue radiosensitization together with protection of normal tissues by tetrahydrouridine to achieve tumor-selective radiotherapy. Topics: Bromodeoxycytidine; Bromodeoxyuridine; Carcinoma, Squamous Cell; Cell Line; Cells, Cultured; DNA Repair; Drug Synergism; Humans; Laryngeal Neoplasms; Naphthoquinones; Radiation-Sensitizing Agents | 1987 |