brl-37344 and Chronic-Disease

brl-37344 has been researched along with Chronic-Disease* in 2 studies

Other Studies

2 other study(ies) available for brl-37344 and Chronic-Disease

ArticleYear
Chronic β1-adrenergic blockade enhances myocardial β3-adrenergic coupling with nitric oxide-cGMP signaling in a canine model of chronic volume overload: new insight into mechanisms of cardiac benefit with selective β1-blocker therapy.
    Basic research in cardiology, 2015, Volume: 110, Issue:1

    The β1-adrenergic antagonist metoprolol improves cardiac function in animals and patients with chronic heart failure, isolated mitral regurgitation (MR), and ischemic heart disease, though the molecular mechanisms remain incompletely understood. Metoprolol has been reported to upregulate cardiac expression of β3-adrenergic receptors (β3AR) in animal models. Myocardial β3AR signaling via neuronal nitric oxide synthase (nNOS) activation has recently emerged as a cardioprotective pathway. We tested whether chronic β1-adrenergic blockade with metoprolol enhances myocardial β3AR coupling with nitric oxide-stimulated cyclic guanosine monophosphate (β3AR/NO-cGMP) signaling in the MR-induced, volume-overloaded heart. We compared the expression, distribution, and inducible activation of β3AR/NO-cGMP signaling proteins within myocardial membrane microdomains in dogs (canines) with surgically induced MR, those also treated with metoprolol succinate (MR+βB), and unoperated controls. β3AR mRNA transcripts, normalized to housekeeping gene RPLP1, increased 4.4 × 10(3)- and 3.2 × 10(2)-fold in MR and MR+βB hearts, respectively, compared to Control. Cardiac β3AR expression was increased 1.4- and nearly twofold in MR and MR+βB, respectively, compared to Control. β3AR was detected within caveolae-enriched lipid rafts (Cav3(+)LR) and heavy density, non-lipid raft membrane (NLR) across all groups. However, in vitro selective β3AR stimulation with BRL37344 (BRL) triggered cGMP production within only NLR of MR+βB. BRL induced Ser (1412) phosphorylation of nNOS within NLR of MR+βB, but not Control or MR, consistent with detection of NLR-specific β3AR/NO-cGMP coupling. Treatment with metoprolol prevented MR-associated oxidation of NO biosensor soluble guanylyl cyclase (sGC) within NLR. Metoprolol therapy also prevented MR-induced relocalization of sGCβ1 subunit away from caveolae, suggesting preserved NO-sGC-cGMP signaling, albeit without coupling to β3AR, within MR+βB caveolae. Chronic β1-blockade is associated with myocardial β3AR/NO-cGMP coupling in a microdomain-specific fashion. Our canine study suggests that microdomain-targeted enhancement of myocardial β3AR/NO-cGMP signaling may explain, in part, β1-adrenergic antagonist-mediated preservation of cardiac function in the volume-overloaded heart.

    Topics: Adrenergic beta-1 Receptor Antagonists; Animals; Chronic Disease; Cyclic GMP; Dogs; Ethanolamines; Guanylate Cyclase; Membrane Microdomains; Metoprolol; Mitral Valve Insufficiency; Nitric Oxide; Nitric Oxide Synthase Type I; Receptors, Adrenergic, beta-3; Receptors, Cytoplasmic and Nuclear; Signal Transduction; Soluble Guanylyl Cyclase; Ventricular Function, Left

2015
Effect of β3-adrenergic receptor on atrial L-type Ca(2+) current in rats with chronic heart failure.
    Heart, lung & circulation, 2014, Volume: 23, Issue:4

    To investigate the effect of selective β3-adrenoreceptor agonist BRL-37344 on L-type Ca(2+) current (Ica,L) and mRNA expression of L-type Ca(2+) channel α2δ-2 (Cacna2d2) in rats with chronic heart failure (CHF).. Twenty-four male Wistar rats were divided into normal control (n=6) and CHF group (n=18), which were further divided into CHF control and BRL group (0.4nmol/kg, IV, twice weekly for four weeks). Echocardiography was performed to assess the structure and function of the left atrium (LA).. The LA in the BRL group (4.4 ± 0.2mm) was larger than in the normal control (3.5 ± 0.3mm, P<0.01) or CHF control (4.0 ± 0.2mm, P<0.05) group. The LA ejection fraction in the BRL group (36.2 ± 4.2%) was lower than in the normal control (58.0 ± 3.1%, P<0.01) or CHF control group (42.3 ± 4.8%, P<0.05). There was no difference in Ica,L density between the BRL group and CHF control group (8.3 ± 1.7 vs. 8.2 ± 2.6 pA/pF, P>0.05), which was higher than in the normal control group (6.0 ± 1.8 pA/pF, P<0.01). There was no difference in the mRNA expression of α2δ-2 (Cacna2d2) between the BRL group and CHF control group (0.264 ± 0.005 vs. 0.243 ± 0.017, P>0.05), which was also higher than in the normal control group (0.137 ± 0.013, P<0.01).. β3-Adrenoreceptor stimulation with BRL-37344 was associated with an increase in LA diameter and a decrease in LA function in chronic heart failure. These structural and function changes were not related to Ica,L or L-type Ca(2+) channel α2δ-2 (Cacna2d2) subunit in the LA myocytes.

    Topics: Adrenergic beta-Agonists; Animals; Calcium; Calcium Channels; Calcium Channels, L-Type; Chronic Disease; Ethanolamines; Heart Atria; Heart Failure; Male; Myocardium; Rats; Rats, Wistar; Receptors, Adrenergic, beta-3

2014