brl-26830a and Disease-Models--Animal

brl-26830a has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for brl-26830a and Disease-Models--Animal

ArticleYear
Effects of monosodium glutamate-induced obesity in spontaneously hypertensive rats vs. Wistar Kyoto rats: serum leptin and blood flow to brown adipose tissue.
    Hypertension research : official journal of the Japanese Society of Hypertension, 2000, Volume: 23, Issue:5

    We compared the effects of hypothalamic obesity induced by neonatal monosodium glutamate (MSG) treatment between spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Newborn WKY and SHR were injected intraperitoneally with 4 mg/kg body weight of MSG daily for 5 days. At 6 months of age, the obesity of SHR was more advanced than that of WKY, but at 14 months of age the severity of obesity was similar between the two strains. Hypertriglyceridemia was enhanced in MSG-treated SHR as compared with MSG-treated WKY. Systolic blood pressure measured by the tail-cuff method was consistently lower in MSG-treated SHR than in control SHR, whereas blood pressure was not affected by neonatal MSG treatment in WKY. Food restriction reduced body weight more in control SHR than in control WKY, with the former also showing enhanced ketogenesis. Neonatal MSG treatment abolished the accelerated reduction of body weight in SHR. Serum leptin concentration was markedly increased in MSG-treated obese rats, though no differences were seen between WKY and SHR in the control or MSG-treated groups. Serum leptin was closely correlated with both Lee obese index and mesenteric fat weight over the strain. Blood flow in interscapular brown adipose tissue (BAT) measured by Laser Doppler flowmetry was significantly increased in response to beta3-adrenoceptor agonist BRL26830A in both the control and MSG-treated rats. However, the response of blood flow was not affected by MSG treatment or strain difference. The present study demonstrated some strain differences in response to neonatal MSG treatment between WKY and SHR. These differences could not be explained by the difference in serum leptin level or beta3-adrenergic reactivity in BAT.

    Topics: Adipose Tissue, Brown; Adrenergic beta-3 Receptor Agonists; Adrenergic beta-Agonists; Animals; Blood Pressure; Disease Models, Animal; Energy Intake; Ethanolamines; Female; Food Additives; Hypertension; Leptin; Male; Obesity; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Regional Blood Flow; Sodium Glutamate; Weight Loss

2000
Anti-obesity and anti-diabetic actions of a beta 3-adrenoceptor agonist, BRL 26830A, in yellow KK mice.
    Endocrinologia japonica, 1991, Volume: 38, Issue:4

    The anti-obesity and anti-diabetic actions of BRL 26830A, beta 3-adrenoceptor agonist, (2 mg/kg administered intramuscularly daily for 2 weeks) were evaluated in obese diabetic Yellow KK mice and C57B1 control mice. The following parameters were compared in the treated vs. control animals: brown adipose tissue (BAT) thermogenesis, resting metabolic rate (RMR), insulin receptors in adipocytes, and blood glucose and serum insulin levels during a glucose overloading test. BRL 26830A significantly increased BAT thermogenesis and RMR but it decreased the amount of white adipose tissue without affecting food intake. Those actions contributed to the mitigation of obesity in Yellow KK mice. BRL 26830A also increased the concentration of insulin receptors and decreased the levels of serum insulin and blood glucose during the glucose overloading test in Yellow KK mice. In the glucose overloading test performed one hour after BRL 26830A injection, insulin secretion was significantly increased and the blood glucose level was markedly decreased in both groups. These observations suggest that BRL 26830A possesses anti-obesity and anti-diabetic actions and consequently may be useful for treating obesity as well as non-insulin-dependent diabetes mellitus with obesity.

    Topics: Adipose Tissue, Brown; Adrenergic beta-Agonists; Animals; Blood Glucose; Diabetes Mellitus; Disease Models, Animal; Ethanolamines; Guanosine Diphosphate; Insulin; Male; Mice; Mice, Inbred Strains; Mitochondria; Obesity; Organ Size; Oxygen Consumption; Proteins

1991