bradykinin--met-lys- and Candidiasis

bradykinin--met-lys- has been researched along with Candidiasis* in 2 studies

Other Studies

2 other study(ies) available for bradykinin--met-lys- and Candidiasis

ArticleYear
Release of biologically active kinin peptides, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin from human kininogens by two major secreted aspartic proteases of Candida parapsilosis.
    Peptides, 2013, Volume: 48

    In terms of infection incidence, the yeast Candida parapsilosis is the second after Candida albicans as causative agent of candidiases in humans. The major virulence factors of C. parapsilosis are secreted aspartic proteases (SAPPs) which help the pathogen to disseminate, acquire nutrients and dysregulate the mechanisms of innate immunity of the host. In the current work we characterized the action of two major extracellular proteases of C. parapsilosis, SAPP1 and SAPP2, on human kininogens, proteinaceous precursors of vasoactive and proinflammatory bradykinin-related peptides, collectively called the kinins. The kininogens, preferably the form with lower molecular mass, were effectively cleaved by SAPPs, with the release of two uncommon kinins, Met-Lys-bradykinin and Leu-Met-Lys-bradykinin. While optimal at acidic pH (4-5), the kinin release yield was only 2-3-fold lower at neutral pH. These peptides were able to interact with cellular kinin receptors of B2 subtype and to stimulate the human endothelial cells HMEC-1 to increased secretion of proinflammatory interleukins (ILs), IL-1β and IL-6. The analysis of the stability of SAPP-generated kinins in plasma suggested that they are biologically equivalent to bradykinin, the best agonist of B2 receptor subtype and can be quickly converted to des-Arg(9)-bradykinin, the agonist of inflammation-inducible B1 receptors.

    Topics: Aspartic Acid Endopeptidases; Aspartic Acid Proteases; Bradykinin; Candida; Candidiasis; Endothelial Cells; Fungal Proteins; Humans; Kininogens; Oligopeptides; Peptides

2013
Extracellular aspartic protease SAP2 of Candida albicans yeast cleaves human kininogens and releases proinflammatory peptides, Met-Lys-bradykinin and des-Arg(9)-Met-Lys-bradykinin.
    Biological chemistry, 2012, Volume: 393, Issue:8

    Bradykinin-related peptides, universal mediators of inflammation collectively referred to as the kinins, are often produced in excessive amounts during microbial infections. We have recently shown that the yeast Candida albicans, the major fungal pathogen to humans, can exploit two mechanisms to enhance kinin levels at the sites of candidial infection, one depending on adsorption and activation of the endogenous kinin-generating system of the host on the fungal cell wall and the other relying on cleavage of kinin precursors, the kininogens, by pathogen-secreted proteases. This work aimed at assigning this kininogenase activity to the major secreted aspartic protease of C. albicans (SAP2). The purified SAP2 was shown to cleave human kininogens, preferably the low molecular mass form (LK) and optimally in an acidic environment (pH 3.5-4.0), and to produce two kinins, Met-Lys-bradykinin and its derivative, [Hydroxyproline(3)]-Met-Lys-bradykinin, both of which are capable of interacting with cellular bradykinin receptors of the B2 subtype. Additionally, albeit with a lower yield, des-Arg(9)-Met-Lys-bradykinin, an effective agonist of B1-subtype receptors, was released. The pathophysiological potential of these kinins and des-Arg-kinin was also proven by presenting their ability to stimulate human promonocytic cells U937 to release proinflammatory interleukin 1β (IL-1β) and IL-6.

    Topics: Amino Acid Sequence; Aspartic Acid Endopeptidases; Bradykinin; Candida albicans; Candidiasis; Cell Line; Fungal Proteins; Humans; Interleukin-1beta; Interleukin-6; Kininogens; Molecular Sequence Data; Receptors, Bradykinin

2012