bq-485 has been researched along with Ischemia* in 2 studies
2 other study(ies) available for bq-485 and Ischemia
Article | Year |
---|---|
Endothelin B receptor-mediated protection against anoxia-reoxygenation injury in perfused rat liver: nitric oxide-dependent and -independent mechanisms.
This study aimed to investigate the roles of endothelin (ET) receptors in biliary dysfunction and cell injury in postischemic livers. Rat livers perfused with oxygenated Krebs-Henseleit solution were exposed to reoxygenation following 20-minute hypoxia. The anoxic perfusion decreased bile output and reduced cyclic guanosine monophosphate (cGMP) contents, an index of nitric oxide (NO) generation. Upon reoxygenation, the decreased bile was not fully recovered, and the resistance increased biphasically: an early transient spike accompanied by an elevated release of ET-1 and a rise accompanied by a cGMP elevation in the later period. The initial vasoconstriction appeared to be mediated by both ET(A) and ET(B) receptors, as judged by inhibitory effects of their antagonists, BQ-485 and BQ-788, respectively, while the late elevation of the resistance was not attenuated by these reagents, but rather enhanced by the ET(B) blockade. The BQ-788 treatment attenuated the reoxygenation-induced cGMP elevation and induced bile acid-dependent choleresis. However, such a change upon the ET(B) blockade coincided with dissociation of a recovery of phospholipids and aggravation of cell injury. The BQ-788-elicited deterioration of reoxygenation-elicited changes was attenuated by NO supplement with S-nitroso-N-acetyl penicillamine. N(omega)-Nitro-L-arginine methyl ester, an NO synthase inhibitor, mimicked biliary changes elicited by the ET(B) blockade but without causing notable cell injury. Under these circumstances, coadministration of clotrimazole, an inhibitor of cytochrome P450 mono-oxygenases, elicited the injury comparable with that observed under the ET(B) blockade. These results suggest that ET(B)-mediated signaling limits excessive bile acid excretion and plays a protective role against reoxygenation injury through mechanisms involving both NO-dependent and -independent processes. Topics: Animals; Azepines; Bile; Bile Acids and Salts; Cholestasis; Endothelin Receptor Antagonists; Ischemia; Male; Nitric Oxide; Oligopeptides; Perfusion; Piperidines; Rats; Rats, Wistar; Receptor, Endothelin B; Receptors, Endothelin; Renal Circulation; Reperfusion Injury; Vascular Resistance | 2001 |
Suppressed endothelin-1 production by FK506 and cyclosporin A in ischemia/reperfusion of rat small intestine.
Endothelin-1 (ET-1), a novel vasoconstrictor, possibly plays a role in the mediation of ischemia/reperfusion (I/R) injury. Tacrolimus (FK506) and cyclosporin A (CsA) were reported to maintain tissue microcirculation of the liver subjected to I/R. This study investigated the effects of these immunosuppressants on intestinal I/R in terms of intestinal tissue microcirculation associated with ET-1.. Male S-D rats were pretreated twice with FK506 (0.2 mg/kg), CsA (10 mg/kg) or only saline solution (0.5 mL). The tissue microcirculation in the control was reduced after I/R (29% +/- 10%) accompanied by hypotension, increased tissue ET-1 expression (25.0% +/- 6.4% to 67.9% +/- 5.0% 60 minutes after reperfusion), and increased ET-1 level in the portal blood (3.4 +/- 0.9 to 23.6 +/- 6.1 pg/mL). FK506 suppressed ET-1 expression (27.3% +/- 5.2%, 4.1 +/- 2.2 pg/mL), maintained microcirculation (96% +/- 16%), and blood pressure, reduced histologic damage, and improved survival. CsA had a similar but weaker effect compared with FK506. An additional experiment was performed with BQ485Na (BQ), an ETA receptor antagonist, to evaluate the genuine role of ET-1. BQ showed almost the same effects as FK506.. FK506 and CsA, particularly the former, maintain microcirculation and protect the tissue from I/R injury by suppressing the production and release of ET-1. Topics: Animals; Azepines; Blood Pressure; Cyclosporine; Endothelin Receptor Antagonists; Endothelin-1; Hypotension; Immunosuppressive Agents; Intestine, Small; Ischemia; Male; Microcirculation; Oligopeptides; Portal System; Rats; Rats, Sprague-Dawley; Receptor, Endothelin A; Receptors, Endothelin; Reperfusion Injury; Survival Rate; Tacrolimus; Time Factors | 1999 |