bq-123 has been researched along with Renal-Insufficiency* in 2 studies
2 other study(ies) available for bq-123 and Renal-Insufficiency
Article | Year |
---|---|
Losartan and Sodium Nitroprusside Effectively Protect against Renal Impairments after Ischemia and Reperfusion in Rats.
Ischemia and subsequent reperfusion are known to impair renal function. We examined several agents that might prevent renal impairment or enhance the recovery of renal function after ischemia/reperfusion injury in rats. Different degrees of preventive effects were observed in rats treated with captopril, BQ-123 (endothelin type A receptor antagonist), sodium nitroprusside (SNP, a nitric oxide donor), and losartan (angiotensin II type 1 receptor antagonist). Only minimal changes in renal morphology were observed after treatment with losartan, SNP, captopril, and BQ-123 compared with control animals. On the other hand, lesions were prominent in the N(G)-nitro-L-arginine-methyl ester (L-NAME)- and L-arginine-treated rats. The Na(+)-K(+) ATPase activity of ischemic kidneys was, however, preserved in all treatment groups, except in those treated with L-arginine and L-NAME, which showed a marked reduction in Na(+)-K(+) ATPase activity. Our post-treatment data suggest that losartan and SNP have the greatest potential for therapeutic use to mitigate post-ischemic renal damage and functional impairment. Topics: Adenosine Triphosphatases; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Arginine; Captopril; Ischemia; Kidney; Losartan; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide Donors; Nitroprusside; Peptides, Cyclic; Rats, Wistar; Renal Insufficiency; Reperfusion; Reperfusion Injury | 2015 |
Endothelin antagonists in salt-dependent hypertension associated with renal insufficiency.
Bosentan is a nonspecific antagonist for endothelin (ET) receptors, and BQ123 is a specific inhibitor for ET-A receptors. We compared the effects of bosentan (10 mg/kg intravenously, i.v.) and BQ123 (10 mg/kg/h i.v.) on blood pressure and renal function in deoxycorticosterone acetate (DOCA)-salt rats, Dahl salt-sensitive (Dahl-S) rats, and normotensive Wistar rats. In normotensive Wistar rats, bosentan and BQ123 decreased blood pressure. Only BQ123 decreased glomerular filtration rate (GFR) and filtration fraction. These results indicate that ET-A receptors play a role in glomerular function. In DOCA-salt rats, bosentan and BQ123 caused a decrease in blood pressure to normal range and a decrease in renal vascular resistances. Bosentan decreased filtration fraction. Paradoxically, BQ123 caused a decrease in GFR. In Dahl-S rats, bosentan and BQ123 decreased blood pressure, but blood pressure did not reach normal ranges. Bosentan did not modify renal function, but BQ123 caused a decrease in the GFR and filtration fraction. Our results confirm the importance of specific and nonspecific ET antagonists in decreasing blood pressure in models of salt-dependent hypertension. However nonspecific inhibition of ET action did not improve renal function and specific inhibition of ET-A receptors by BQ123 temporarily worsened renal function. Topics: Animals; Blood Pressure; Bosentan; Desoxycorticosterone; Endothelins; Glomerular Filtration Rate; Hypertension; Peptides, Cyclic; Rats; Rats, Wistar; Renal Circulation; Renal Insufficiency; Sodium Chloride; Sulfonamides | 1996 |