bq-123 and Osteoarthritis

bq-123 has been researched along with Osteoarthritis* in 2 studies

Other Studies

2 other study(ies) available for bq-123 and Osteoarthritis

ArticleYear
Endothelin-1 inhibits size dependent lymphatic clearance of PEG-based conjugates after intra-articular injection into the rat knee.
    Acta biomaterialia, 2019, 07-15, Volume: 93

    Clearance of particles from the knee is an essential mechanism to maintain healthy joint homeostasis and critical to the delivery of drugs and therapeutics. One of the limitations in developing disease modifying drugs for joint diseases, such as osteoarthritis (OA), has been poor local retention of the drugs. Enhancing drug retention within the joint has been a target of biomaterial development, however, a fundamental understanding of joint clearance pathways has not been characterized. We applied near-infrared (NIR) imaging techniques to assess size-dependent in vivo clearance mechanisms of intra-articular injected, fluorescently-labelled polyethylene glycol (PEG-NIR) conjugates. The clearance of 2 kDa PEG-NIR (τ = 171 ± 11 min) was faster than 40 kDa PEG-NIR (τ = 243 ± 16 min). 40 kDa PEG-NIR signal was found in lumbar lymph node while 2 kDa PEG-NIR signal was not. Thus, these two conjugates may be cleared through different pathways, i.e. lymphatics for 40 kDa PEG-NIR and venous for 2 kDa PEG-NIR. Endothelin-1 (ET-1), a potent vasoconstrictor of vessels, is elevated in synovial fluid of OA patients but, its effects on joint clearance are unknown. Intra-articular injection of ET-1 dose-dependently inhibited the clearance of both 2 kDa and 40 kDa PEG-NIR. ET-1 caused a 1.63 ± 0.17-fold increase in peak fluorescence for 2 kDa PEG-NIR and a 1.85 ± 0.15-fold increase for 40 kDa PEG-NIR; and ET-1 doubled their clearance time constants. The effects of ET-1 were blocked by co-injection of ET receptor antagonists, bosentan or BQ-123. These findings provide fundamental insight into retention and clearance mechanisms that should be considered in the development and delivery of drugs and biomaterial carriers for joint diseases. STATEMENT OF SIGNIFICANCE: This study demonstrates that in vivo knee clearance can be measured using NIR technology and that key factors, such as size of materials and biologics, can be investigated to define joint clearance mechanisms. Therapies targeting regulation of joint clearance may be an approach to treat joint diseases like osteoarthritis. Additionally, in vivo functional assessment of clearance may be used as diagnostics to monitor progression of joint diseases.

    Topics: Animals; Biocompatible Materials; Bosentan; Drug Carriers; Drug Liberation; Endothelin-1; Fluorescent Dyes; Injections, Intra-Articular; Kinetics; Knee Joint; Lymphatic Vessels; Male; Optical Imaging; Osteoarthritis; Peptides, Cyclic; Polyethylene Glycols; Rats; Rats, Sprague-Dawley; Synovial Fluid; Tissue Distribution

2019
Endothelin‑1 induces oncostatin M expression in osteoarthritis osteoblasts by trans‑activating the oncostatin M gene promoter via Ets‑1.
    Molecular medicine reports, 2016, Volume: 13, Issue:4

    Oncostatin M (OSM) contributes to cartilage degeneration in osteoarthritis (OA) and was demonstrated to be expressed in OA osteoblasts. Endothelin‑1 (ET‑1) is implicated in the degradation of OA articular cartilage, and osteoblast proliferation and bone development. In the present study, the effects of ET‑1 on OSM expression in human OA osteoblasts were investigated, to the best of our knowledge, for the first time. Primary human OA osteoblasts were treated with ET‑1 (1, 5, 10, 20 and 30 nM) for 0.5, 1, 2, 3 and 4 h with or without the selective ETA receptor (ETAR) antagonist, BQ123, ETB receptor antagonist, BQ788 or the phosphatidylinositol 3‑kinase (PI3K) inhibitor, BKM120. ET‑1 treatment induced OSM mRNA expression, and the intracellular and secreted protein levels of OA osteoblasts in a dose‑dependent manner. This effect was suppressed by BQ123 and BKM120, but not BQ788 administration. In combination with electrophoretic mobility shift assays, deletional and mutational analyses on the activity of a human OSM promoter/luciferase reporter demonstrated that ET‑1 induced OSM expression in OA osteoblasts by trans‑activating the OSM gene promoter through specific binding of Ets‑1 to an Ets‑1 binding site in the OSM promoter in an ETAR‑ and PI3K‑dependent manner. Furthermore, ET‑1 treatment increased the expression of Ets‑1 in a dose‑dependent manner, however the knockdown of Ets‑1 suppressed the ET1‑induced expression of OSM in OA osteoblasts. In conclusion, the present study demonstrated that ET‑1 induces the expression of OSM in OA osteoblasts by trans‑activating the OSM gene promoter primarily through increasing the expression level of Ets‑1 in an ETAR‑ and PI3K‑dependent manner. The current study suggested novel insights into the mechanistic role of ET‑1 in the pathophysiology of OA.

    Topics: Aminopyridines; Base Sequence; Binding Sites; Cells, Cultured; Endothelin-1; Genes, Reporter; Humans; Molecular Sequence Data; Morpholines; Oligopeptides; Oncostatin M; Osteoarthritis; Osteoblasts; Peptides, Cyclic; Piperidines; Promoter Regions, Genetic; Protein Binding; Proto-Oncogene Protein c-ets-1; RNA Interference; RNA, Messenger; RNA, Small Interfering; Transcriptional Activation

2016