bq-123 and Heat-Stroke

bq-123 has been researched along with Heat-Stroke* in 2 studies

Reviews

1 review(s) available for bq-123 and Heat-Stroke

ArticleYear
Cerebrovascular dysfunction is an attractive target for therapy in heat stroke.
    Clinical and experimental pharmacology & physiology, 2006, Volume: 33, Issue:8

    1. The aim of the present review is to summarize clinical observations and results of animal models that advance the knowledge of the attenuation of cerebrovascular dysfunction in the setting of heat stroke. It is a narrative review of selected published literature from Medline over the period 1959-2005. 2. All heat-stressed rodents, even under general anaesthesia, have hyperthermia, systemic inflammation, hypercoagulable state, arterial hypotension and tissue ischaemia and injury in multiple organs. These findings demonstrate that rodent heat stroke models can nearly mirror the full spectrum of human heat stroke. Experimental heat stroke fulfills the empirical triad used for the diagnosis of classical human heat stroke, namely hyperthermia, central nervous system alterations and a history of heat stress. 3. These physiological dysfunctions and survival during heat stroke can be improved by whole-body or brain cooling therapy adopted immediately after the onset of heat stroke. 4. However, in the absence of body or brain cooling, these heat stroke reactions can still be reduced by the following measures: (i) fluid replacement with 3% NaCl solution, 10% human albumin or hydroxyethyl starch; (ii) intravenous delivery of anti-inflammatory drugs, free radical scavengers or interleukin-1 receptor antagonists; (iii) hyperbaric oxygen therapy; or (iv) transplantation of human umbilical cord blood cells. 5. In addition, before initiation of heat stress, prior manipulations with one of the following measures was found to be able to protect against heat stroke reactions: (i) systemic delivery of alpha-tocopherol, mannitol, inducible nitric oxide synthase inhibitors, mu-opioid receptor antagonists, endothelin ETA receptor antagonists, serotoninergic nerve depletors or receptor antagonists, or glutamate receptor antagonists; or (ii) heat shock protein 72 preconditioning. 6. There is compelling evidence that cerebrovascular dysfunction is an attractive target for therapy in heat stroke.

    Topics: Animals; Antihypertensive Agents; Blood Coagulation; Brain; Brain Ischemia; Cerebrovascular Circulation; Cryotherapy; Disease Models, Animal; Endothelial Cells; Endothelin Receptor Antagonists; Enzyme Inhibitors; Fluid Therapy; Free Radical Scavengers; Heat Stroke; Humans; Hyperbaric Oxygenation; Nitric Oxide Synthase; Peptides, Cyclic; Receptors, Endothelin

2006

Other Studies

1 other study(ies) available for bq-123 and Heat-Stroke

ArticleYear
Prior antagonism of endothelin-1A receptors alleviates circulatory shock and cerebral ischemia during rat heatstroke.
    Journal of pharmacological sciences, 2004, Volume: 96, Issue:2

    In this study, we investigated the acute hemodynamic effects of an infusion of the endothelin-1 (ET-1)-A-selective receptor antagonists BQ-610 and BQ-123 in heatstroke rats with circulatory shock and cerebral ischemia. Heatstroke was induced by putting the anesthetized adult Sprague-Dawley rats into an ambient temperature of 42 degrees C. The moment in which the mean arterial pressure dropped irreversibly from the peak for an extent of 25 mmHg was taken as the onset of heatstroke. The interval between initiation of heat exposure and heatstroke onset was found to be about 80 min for rats treated with vehicle solution. When the animals were exposed to 42 degrees C for 80 min, hyperthermia, arterial hypotension, decrement of cardiac output (due to decreased stroke volume and decreased total peripheral resistance), increment of plasma ET-1 and tumor necrosis factor-alpha, and increment of cerebral ischemia and injury markers were manifested. Prior antagonism of ET-1 A receptors with BQ-610 (0.5 mg/kg, i.v.) or BQ-123 (1 mg/kg, i.v.), but not ET-1B receptors with BQ-788 (0.5 mg/kg, i.v.), 60 min before the initiation of heat exposure, appreciably alleviated hyperthermia, arterial hypotension, decreased cardiac output, increment of tumor necrosis factor-alpha, and increment of cerebral ischemia (e.g., glutamate and lactate/pyruvate ratio) and injury (e.g., glycerol) markers exhibited during heatstroke. The data indicates that ET-1A receptor antagonism may maintain appropriate levels of mean arterial pressure and cerebral circulation during heatstroke by reducing production of tumor necrosis factor-alpha.

    Topics: Animals; Brain Ischemia; Endothelin-1; Heat Stroke; Male; Oligopeptides; Peptides, Cyclic; Rats; Rats, Sprague-Dawley; Shock; Time Factors

2004