bq-123 and Cardiomyopathies

bq-123 has been researched along with Cardiomyopathies* in 3 studies

Other Studies

3 other study(ies) available for bq-123 and Cardiomyopathies

ArticleYear
Attenuation of Doxorubicin-induced cardiomyopathy by endothelin-converting enzyme-1 ablation through prevention of mitochondrial biogenesis impairment.
    Hypertension (Dallas, Tex. : 1979), 2010, Volume: 55, Issue:3

    Doxorubicin is an effective antineoplastic drug; however, its clinical benefit is limited by its cardiotoxicity. The inhibition of mitochondrial biogenesis is responsible for the pathogenesis of doxorubicin-induced cardiomyopathy. Endothelin-1 is a vasoconstrictive peptide produced from big endothelin-1 by endothelin-converting enzyme-1 (ECE-1) and a multifunctional peptide. Although plasma endothelin-1 levels are elevated in patients treated with doxorubicin, the effect of ECE-1 inhibition on doxorubicin-induced cardiomyopathy is not understood. Cardiomyopathy was induced by a single IP injection of doxorubicin (15 mg/kg). Five days after treatment, cardiac function, histological change, and mitochondrial biogenesis were assessed. Echocardiography revealed that cardiac systolic function was significantly deteriorated in doxorubicin-treated wild-type (ECE-1(+/+)) mice compared with ECE-1 heterozygous knockout (ECE-1(+/-)) mice. In histological analysis, cardiomyocyte size in ECE-1(+/-) mice was larger, and cardiomyocyte damage was less. In ECE-1(+/+) mice, tissue adenosine triphosphate content and mitochondrial superoxide dismutase were decreased, and reactive oxygen species generation was increased compared with ECE-1(+/-) mice. Cardiac mitochondrial deoxyribonucleic acid copy number and expressions of key regulators for mitochondrial biogenesis were decreased in ECE-1(+/+) mice. Cardiac cGMP content and serum atrial natriuretic peptide concentration were increased in ECE-1(+/-) mice. In conclusion, the inhibition of ECE-1 attenuated doxorubicin-induced cardiomyopathy by inhibiting the impairment of cardiac mitochondrial biogenesis. This was mainly induced by decreased endothelin-1 levels and an enhanced atrial natriuretic peptide-cGMP pathway. Thus, the inhibition of ECE-1 may be a new therapeutic strategy for doxorubicin-induced cardiomyopathy.

    Topics: Animals; Antibiotics, Antineoplastic; Antihypertensive Agents; Aspartic Acid Endopeptidases; Atrial Natriuretic Factor; Blood Pressure; Cardiomyopathies; Cyclic GMP; Disease Models, Animal; Doxorubicin; Echocardiography; Endothelin-1; Endothelin-Converting Enzymes; Heart Rate; Male; Metalloendopeptidases; Mice; Mice, Knockout; Mitochondria; Myocardium; Peptides, Cyclic

2010
Increased vascular angiotensin II binding capacity and ET-1 release in young cardiomyopathic hamsters.
    Vascular pharmacology, 2006, Volume: 44, Issue:4

    Heart failure (HF) is a multifactorial and progressive disease that has been associated with multiple systemic and vascular alterations. Previous reports from our laboratory showed that in 2-month-old Bio-To2 Syrian cardiomyopathic hamsters (SCH) that have not yet developed the clinical manifestations of HF, the vascular contractility induced by 0.1 microM angiotensin II was approximately 35% greater than in control animals. This finding was observed concomitantly with an increased aortic ACE activity. To further evaluate the mechanisms underlying angiotensin II-enhanced vascular contraction, concentration-response curves for angiotensin II (0.01 nM-10 microM) were constructed before and after the addition of prazosin (alpha-1 blocker), NS-398 (selective COX-2 blocker) and BQ-123 (ET-1A-receptor antagonist) in aortic rings from 2-month-old SCH. The binding capacity and affinity of the AT-1 receptors were also evaluated in aortic homogenates using 125I-angiotensin II. Age-matched golden hamsters were used as controls (CT). Our results indicate that incubation with either 10 microM prazosin or 10 microM NS-398 did not modify EC50 or Emax values for angiotensin II indicating that norepinephrine and prostaglandins are not involved in the enhanced contractile action of angiotensin II. However, 10 microM BQ-123 reduced by 40% the contraction induced by 1.0 microM angiotensin II (from 1.05+/-0.04 to 0.6475+/-0.06 g/mg tissue, n = 5, P < 0.05), suggesting that in cardiomyopathic hamsters, the action of angiotensin II is mediated in part by ET-1. At lower angiotensin II concentration (0.1 microM), the ET-1-dependent contraction decreases to 29%. In addition, although dissociation constants for labeled angiotensin II were found to be similar in the aorta of SCH and control animals (K(D): CT = 7.8 nM and SCH = 5.1 nM), 125I-angiotensin II binding capacity was about 2-fold greater in SCH than in controls (Bmax: SCH = 1113 and CT = 605 fmol/mg protein). Altogether these results suggest that in 2-month-old SCH the enhanced response of angiotensin II in the vasculature is mediated both by an increased binding capacity for the hormone and facilitation of the ET-1 action.

    Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Aorta, Thoracic; Binding, Competitive; Cardiomyopathies; Cricetinae; Disease Models, Animal; Disease Progression; Dose-Response Relationship, Drug; Endothelin A Receptor Antagonists; Endothelin-1; In Vitro Techniques; Losartan; Male; Mesocricetus; Peptides, Cyclic; Protein Binding; Receptor, Angiotensin, Type 1; Receptor, Endothelin A; Vasoconstriction; Vasoconstrictor Agents

2006
Decreased myocardial contractility after damage to endocardial endothelium is caused mainly by loss of endothelin production.
    Cardiovascular research, 1995, Volume: 30, Issue:5

    Topics: Animals; Cardiomyopathies; Cats; Cells, Cultured; Endocardium; Endothelin Receptor Antagonists; Endothelins; Endothelium; Ferrets; Myocardial Contraction; Peptides, Cyclic; Rabbits

1995