bosutinib and Leukemia--Myelogenous--Chronic--BCR-ABL-Positive

bosutinib has been researched along with Leukemia--Myelogenous--Chronic--BCR-ABL-Positive* in 5 studies

Reviews

1 review(s) available for bosutinib and Leukemia--Myelogenous--Chronic--BCR-ABL-Positive

ArticleYear
The progress of small-molecules and degraders against BCR-ABL for the treatment of CML.
    European journal of medicinal chemistry, 2022, Aug-05, Volume: 238

    Chronic myeloid leukemia (CML) is a malignant disease of the hematopoietic system with crucial pathogenic protein named BCR-ABL, which endangers the life of patients severely. As a milestone of targeted drug, Imatinib has achieved great success in the treatment of CML. Nevertheless, inevitable drug resistance of Imatinib has occurred frequently in clinical due to the several mutations in the BCR-ABL kinase. Subsequently, the second-generation of tyrosine kinase inhibitors (TKIs) against BCR-ABL was developed to address the mutants of Imatinib resistance, except T315I. To date, the third-generation of TKIs targeting T315I has been developed for improving the selectivity and safety. Notably, the first allosteric inhibitor has been in market which could overcome the mutations in ATP binding site effectively. Meanwhile, some advanced technology, such as proteolysis-targeting chimeras (PROTAC) based on different E3 ligand, are highly expected to overcome the drug resistance by selectively degrading the targeted proteins. In this review, we summarized the current research progress of inhibitors and degraders targeting BCR-ABL for the treatment of CML.

    Topics: Antineoplastic Agents; Benzamides; Drug Resistance, Neoplasm; Fusion Proteins, bcr-abl; Humans; Imatinib Mesylate; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Piperazines; Protein Kinase Inhibitors; Pyrimidines

2022

Other Studies

4 other study(ies) available for bosutinib and Leukemia--Myelogenous--Chronic--BCR-ABL-Positive

ArticleYear
Discovery of Asciminib (ABL001), an Allosteric Inhibitor of the Tyrosine Kinase Activity of BCR-ABL1.
    Journal of medicinal chemistry, 2018, 09-27, Volume: 61, Issue:18

    Chronic myelogenous leukemia (CML) arises from the constitutive activity of the BCR-ABL1 oncoprotein. Tyrosine kinase inhibitors (TKIs) that target the ATP-binding site have transformed CML into a chronic manageable disease. However, some patients develop drug resistance due to ATP-site mutations impeding drug binding. We describe the discovery of asciminib (ABL001), the first allosteric BCR-ABL1 inhibitor to reach the clinic. Asciminib binds to the myristate pocket of BCR-ABL1 and maintains activity against TKI-resistant ATP-site mutations. Although resistance can emerge due to myristate-site mutations, these are sensitive to ATP-competitive inhibitors so that combinations of asciminib with ATP-competitive TKIs suppress the emergence of resistance. Fragment-based screening using NMR and X-ray yielded ligands for the myristate pocket. An NMR-based conformational assay guided the transformation of these inactive ligands into ABL1 inhibitors. Further structure-based optimization for potency, physicochemical, pharmacokinetic, and drug-like properties, culminated in asciminib, which is currently undergoing clinical studies in CML patients.

    Topics: Allosteric Regulation; Animals; Dogs; Drug Discovery; Fusion Proteins, bcr-abl; Humans; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Male; Mice; Models, Molecular; Molecular Structure; Mutation; Niacinamide; Phosphorylation; Protein Conformation; Protein Kinase Inhibitors; Pyrazoles; Rats; Rats, Sprague-Dawley; Tumor Cells, Cultured; Xenograft Model Antitumor Assays

2018
Discovery of 2-((3-Amino-4-methylphenyl)amino)-N-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-4-(methylamino)pyrimidine-5-carboxamide (CHMFL-ABL-053) as a Potent, Selective, and Orally Available BCR-ABL/SRC/p38 Kinase Inhibitor for Chronic Myeloid Le
    Journal of medicinal chemistry, 2016, Mar-10, Volume: 59, Issue:5

    Starting from a dihydropyrimidopyrimidine core scaffold based compound 27 (GNF-7), we discovered a highly potent (ABL1: IC50 of 70 nM) and selective (S score (1) = 0.02) BCR-ABL inhibitor 18a (CHMFL-ABL-053). Compound 18a did not exhibit apparent inhibitory activity against c-KIT kinase, which is the common target of currently clinically used BCR-ABL inhibitors. Through significant suppression of the BCR-ABL autophosphorylation (EC50 about 100 nM) and downstream mediators such as STAT5, Crkl, and ERK's phosphorylation, 18a inhibited the proliferation of CML cell lines K562 (GI50 = 14 nM), KU812 (GI50 = 25 nM), and MEG-01 (GI50 = 16 nM). A pharmacokinetic study revealed that 18a had over 4 h of half-life and 24% bioavailability in rats. A 50 mg/kg/day dosage treatment could almost completely suppress tumor progression in the K562 cells inoculated xenograft mouse model. As a potential useful drug candidate for CML, 18a is under extensive preclinical safety evaluation now.

    Topics: Administration, Oral; Animals; Antineoplastic Agents; Apoptosis; Benzamides; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Discovery; Drug Screening Assays, Antitumor; Female; Fusion Proteins, bcr-abl; Humans; K562 Cells; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Male; Mice; Mice, Nude; Models, Molecular; Molecular Structure; Neoplasms, Experimental; p38 Mitogen-Activated Protein Kinases; Protein Kinase Inhibitors; Pyrimidines; Rats; Rats, Sprague-Dawley; src-Family Kinases; Structure-Activity Relationship

2016
Structure-Activity Relationship Study of Rakicidins: Overcoming Chronic Myeloid Leukemia Resistance to Imatinib with 4-Methylester-Rakicidin A.
    Journal of medicinal chemistry, 2016, Feb-11, Volume: 59, Issue:3

    Natural product rakicidin A induces cell death in TKI-resistant chronic myelogenous leukemia (CML) cells. Therefore, 14 rakicidin A analogues were synthesized via a highly efficient combinatorial strategy and were evaluated against CML cell lines. The conjugated diene moiety was found to be crucial for the anti-CML activity of rakicidin A, and the changes in the configuration(s) at C-2, C-3, C-14, C-15, and C-16 resulted in lower levels of anti-CML activity. The most promising compound was 4-methylester rakicidin A (1a). Compared with rakicidin A, 1a exhibited 2.8-fold greater potency against the imatinib-resistant cell line K562/G(+) and approximately 100-fold enhanced potency compared with that of imatinib. Furthermore, compound 1a demonstrated a significantly lower resistance index against Ba/F3 cells expressing BCR-ABL(T315I) than bosutinib, dasatinib, nilotinib, and ponatinib, while 1a exhibited less effect on normal hematopoietic cells. Preliminary results indicated that 1a down-regulated caspase-3 and PARP, which contributes to its K562 cell inhibitory activity.

    Topics: Antineoplastic Agents; Apoptosis; Cell Proliferation; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Humans; Imatinib Mesylate; K562 Cells; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Lipopeptides; Molecular Structure; Peptides, Cyclic; Structure-Activity Relationship

2016
SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice.
    Cancer research, 2003, Jan-15, Volume: 63, Issue:2

    Constitutive tyrosine kinase activity of Bcr-Abl promotes proliferation and survival of chronic myelogenous leukemia (CML) cells. Inhibition of Bcr-Abl tyrosine kinase activity or signaling proteins activated by Bcr-Abl in CML cells blocks proliferation and causes apoptotic cell death. The selective Abl kinase inhibitor, STI-571 (marketed as Gleevec), is toxic to CML cells in culture, causes regression of CML tumors in nude mice, and is currently used to treat CML patients. Here we describe a p.o. active, dual Src/Abl kinase inhibitor with potent antiproliferative activity against CML cells in culture. This 4-anilino-3-quinolinecarbonitrile (SKI-606) ablates tyrosine phosphorylation of Bcr-Abl in CML cells and of v-Abl expressed in fibroblasts. SKI-606 inhibits phosphorylation of cellular proteins, including STAT5, at concentrations that inhibit proliferation in CML cells. Phosphorylation of the autoactivation site of the Src family kinases Lyn and/or Hck is also reduced by treatment with SKI-606. Once daily oral administration of this compound at 100 mg/kg for 5 days causes complete regression of large K562 xenografts in nude mice.

    Topics: Aniline Compounds; Animals; Antineoplastic Agents; Cell Division; Cell Survival; DNA-Binding Proteins; Enzyme Inhibitors; Female; Fusion Proteins, bcr-abl; Humans; K562 Cells; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Mice; Milk Proteins; Nitriles; Phosphorylation; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-abl; Quinolines; src-Family Kinases; STAT5 Transcription Factor; Trans-Activators; Xenograft Model Antitumor Assays

2003