boron has been researched along with Neurodegenerative-Diseases* in 4 studies
2 review(s) available for boron and Neurodegenerative-Diseases
Article | Year |
---|---|
Boron-containing compounds on neurons: Actions and potential applications for treating neurodegenerative diseases.
Boron-containing compounds (BCC) exert effects on neurons. After the expanding of both the identification and synthesis of new BCC, novel effects in living systems have been reported, many of these involving neuronal action. In this review, the actions of BCC on neurons are described; the effects have been inferred by boron deprivation or addition. Also, the effects can be related to those mediated by interaction on ionic channels, G-protein coupled receptors, or other receptors exerting modification on neuronal behavior. Additionally, BCC have exhibited effects by the modulation of inflammation or oxidative processes. BCC are expanding as drugs. Deprivation of boron sources from the diet shows the role of some natural BCC. However, the observations of several new synthesized compounds suggest their ability to act with attractive potency, efficacy, and long-term action on neuronal receptors or processes related with the origin and evolution of neurodegenerative processes. The details of BCC-target interactions are currently being elucidated in progress, as those observed from BCC-protein crystal complexes. Taking all of the above into account, the expansion is presumably near to having studies on the application of BCC as drugs on specific targets for treating neurodegenerative diseases. Topics: Boron; Boron Compounds; Humans; Inflammation; Neurodegenerative Diseases; Neurons | 2023 |
The Role of Microbiome in Brain Development and Neurodegenerative Diseases.
Hundreds of billions of commensal microorganisms live in and on our bodies, most of which colonize the gut shortly after birth and stay there for the rest of our lives. In animal models, bidirectional communications between the central nervous system and gut microbiota (Gut-Brain Axis) have been extensively studied, and it is clear that changes in microbiota composition play a vital role in the pathogenesis of various neurodevelopmental and neurodegenerative disorders, such as Autism Spectrum Disorder, Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, anxiety, stress, and so on. The makeup of the microbiome is impacted by a variety of factors, such as genetics, health status, method of delivery, environment, nutrition, and exercise, and the present understanding of the role of gut microbiota and its metabolites in the preservation of brain functioning and the development of the aforementioned neurological illnesses is summarized in this review article. Furthermore, we discuss current breakthroughs in the use of probiotics, prebiotics, and synbiotics to address neurological illnesses. Moreover, we also discussed the role of boron-based diet in memory, boron and microbiome relation, boron as anti-inflammatory agents, and boron in neurodegenerative diseases. In addition, in the coming years, boron reagents will play a significant role to improve dysbiosis and will open new areas for researchers. Topics: Animals; Autism Spectrum Disorder; Boron; Brain; Microbiota; Neurodegenerative Diseases; Probiotics | 2022 |
2 other study(ies) available for boron and Neurodegenerative-Diseases
Article | Year |
---|---|
Investigation Covering the Effect of Boron plus Taurine Application on Protein Carbonyl and Advanced Oxidation Protein Products Levels in Experimental Alzheimer Model.
Alzheimer's disease (AD) is the most common form of dementia that occurs in the brain. This is a chronic neurodegenerative disease which is valid in 60-70% of all dementia patients. Boron, regarded as a potential antioxidant, has the effect of reducing oxidative stress. Taurine, as one of the thiol-containing amino acids, exists at different concentrations in both the neurons and glial cells of the central nervous system. It plays an important role in the protective and adjuvant therapies as an antioxidant due to its characteristics of maintaining the oxidant-antioxidant balance of the body as well as cell integrity and increasing body resistance. Based on this information, our objective was to reveal the effect of boron alone, taurine alone plus co-administration of taurine and boron application on brain tissue protein carbonyls (PC) and serum advanced oxidation protein products (AOPP) levels in the experimental Alzheimer's model. For this purpose, 5 groups were formed in our study which consisted of 30 Wistar albino male rats. The rats were given a single dose of STZ stereotaxically. At the end of this period, the rats were decapitated, plus their brain tissues and blood were removed. Our findings suggested that taurine alone and co-administration of boron and taurine had a decreasing effect on AOPP and PC levels of the experimental Alzheimer model of the rats. Topics: Advanced Oxidation Protein Products; Alzheimer Disease; Animals; Antioxidants; Boron; Neurodegenerative Diseases; Oxidative Stress; Protein Carbonylation; Rats; Rats, Wistar; Taurine | 2023 |
Boron inhibits apoptosis in hyperapoptosis condition: Acts by stabilizing the mitochondrial membrane and inhibiting matrix remodeling.
An abnormally high apoptosis has been associated with a number of clinical conditions including embryonal malformations and various pathologies such as neuronal degeneration and diabetes. In this study, boron is reported to inhibit apoptosis in hyperapoptosis conditions as demonstrated in a model of hyperapoptosis. Boron is a metalloid which is present in food in small amounts and is suggested here to inhibit apoptosis by stabilizing the mitochondrial membrane structure, thus preventing matrix remodeling and the release of cytochrome c, an apoptosis-inducer protein from the mitochondrion. The protective effect was assessed by measuring the changes in mitochondrial membrane potential, the levels of cytochrome c and downstream activation of caspase 3, besides phosphatidylserine exposure on the cell surface and DNA damage. The study has implication in clinical conditions characterized by hyperapoptosis as seen in certain embryonal malformations and various pathologies. Topics: Apoptosis; Boron; Caspase 3; Cell Line, Tumor; Cell Survival; Cytochromes c; DNA Damage; Humans; In Situ Nick-End Labeling; Membrane Potential, Mitochondrial; Mitochondrial Membranes; Neurodegenerative Diseases; Neurons; Nitrites; Phosphatidylserines | 2019 |