boron and Nephrolithiasis

boron has been researched along with Nephrolithiasis* in 2 studies

Other Studies

2 other study(ies) available for boron and Nephrolithiasis

ArticleYear
High Doses of Boron Have No Protective Effect Against Nephrolithiasis or Oxidative Stress in a Rat Model.
    Biological trace element research, 2018, Volume: 186, Issue:1

    Boron plays roles in the metabolism of calcium, vitamin D, steroid hormones, healthy bone development, and maintenance of cell membranes. The biological effects of boron are dose-dependent but follow a U-shaped pattern, rendering it important to define the active range. The studies of Bahadoran et al. on rats and Naghii et al. on humans showed that low doses of boron (3 and 10 mg/day) prevented kidney stone formation. The aim of this study was to determine whether high doses of boron have an anti-urolithiatic or antioxidant effect on nephrolithiasis in an experimental rat model. The study was conducted on 50 adult male Wistar rats randomized to five groups. Nephrolithiasis was induced with water containing 0.75% ethylene glycol (EG) and 2% ammonium chloride (AC). This treatment was given to animals in all groups for 10 days, except the positive and negative controls. Simultaneously, groups 2, 3, and 4 were given boric acid via gavage at doses of 25, 50, and 100 mg/kg/day (equivalent to 4/8/16 mg boron respectively) as the source of boron. Animals in the negative and positive control groups were given 6 μL/g distilled water without boric acid. At day 10, intra-cardiac blood samples were drawn from all animals. The right and left kidneys were removed for biochemical and histopathological examinations, respectively. The groups were compared with respect to serum urea, creatinine, calcium, phosphorous, total antioxidant status (TAS), total oxidant status (TOS), serum paraoxonase (PON1) activity, tissue calcium and oxalate levels, and stone burden as determined by histopathological examination. Serum urea and creatinine levels were significantly higher (p < 0.001 and p < 0.05, respectively), while serum calcium and phosphorous levels were significantly lower (p < 0.001 and p < 0.001, respectively), in animals given EG/AC compared to negative controls. No significant differences were detected in serum calcium, phosphorous, urea, or creatinine levels between animals treated with boron and positive controls (p > 0.05). Serum PON1 activity was significantly lower in animals given EG/AC than in negative controls (p < 0.001), while no significant difference in serum PON1 level was detected between rats treated with boron and positive controls. No significant differences were detected in vitamin D, TAS, TOS, tissue calcium, or tissue oxalate levels among groups. No stone formation was detected on histopathological examination in negative controls. No significant diff

    Topics: Animals; Antioxidants; Boron; Disease Models, Animal; Male; Nephrolithiasis; Oxidative Stress; Rats; Rats, Wistar; Vitamin D

2018
The efficacy of antioxidant therapy against oxidative stress and androgen rise in ethylene glycol induced nephrolithiasis in Wistar rats.
    Human & experimental toxicology, 2015, Volume: 34, Issue:7

    Administration of natural antioxidants has been used to protect against nephrolithiasis. Urolithiasis was induced by ethylene glycol (EG) in Wistar rats. For 4 weeks, group 1 (control) was fed with a standard commercial diet. Group 2 received the same diet with 0.75% of EG. Group 3 received EG plus the diet and water added with antioxidant nutrients and lime juice as the dietary source of citrate (EG + AX). Group 4 same as group 3 with no EG in water. For 8 weeks, group 5 was fed the standard diet with EG in water for the first 28 days, followed by no EG. Group 6 received the diet with EG for the first 28 days, followed by discontinuation of EG and addition of antioxidant nutrients. Group 7 were provided the diet with antioxidant nutrients for 8 weeks. Group 8 received the diet with antioxidant nutrients for 4 weeks, followed by antioxidant nutrients with EG for the next 4 weeks. Blood samples were collected and kidneys were removed. The size and the mean number of crystal deposits in EG-treated groups was significantly higher than the EG-treated groups, added with antioxidant nutrients and lime juice. After 4 weeks, the mean concentration of malondialdehyde in group 2 was higher than the group 3, and significantly lower in group 4; and in groups 7 after 8 weeks, as well. After 8 weeks, supplementation developed less mean number of deposits in group 6 as compared to group 5; and in group 8, the crystal deposits was substantially less than either group 2 or group 5 (EG-treated rats). Elevated concentration of androgens (as promoters of the formation of renal calculi) as a result of EG consumption decreased following antioxidant supplementations. Results showed a beneficial effect of antioxidant and provided superior renal protection on treating and preventing stone deposition in the rat kidney.

    Topics: Animals; Antioxidants; Ascorbic Acid; Boron; Dihydrotestosterone; Ethylene Glycol; Kidney; Malondialdehyde; Nephrolithiasis; Oxidative Stress; Rats, Wistar; Selenium; Sex Hormone-Binding Globulin; Testosterone; Treatment Outcome; Vitamin A; Vitamin B 6; Vitamin E; Vitamins; Zinc

2015