boron has been researched along with Glioblastoma* in 53 studies
4 review(s) available for boron and Glioblastoma
Article | Year |
---|---|
Organoboron Compounds: Effective Antibacterial and Antiparasitic Agents.
The unique electron deficiency and coordination property of boron led to a wide range of applications in chemistry, energy research, materials science and the life sciences. The use of boron-containing compounds as pharmaceutical agents has a long history, and recent developments have produced encouraging strides. Boron agents have been used for both radiotherapy and chemotherapy. In radiotherapy, boron neutron capture therapy (BNCT) has been investigated to treat various types of tumors, such as glioblastoma multiforme (GBM) of brain, head and neck tumors, etc. Boron agents playing essential roles in such treatments and other well-established areas have been discussed elsewhere. Organoboron compounds used to treat various diseases besides tumor treatments through BNCT technology have also marked an important milestone. Following the clinical introduction of bortezomib as an anti-cancer agent, benzoxaborole drugs, tavaborole and crisaborole, have been approved for clinical use in the treatments of onychomycosis and atopic dermatitis. Some heterocyclic organoboron compounds represent potentially promising candidates for anti-infective drugs. This review highlights the clinical applications and perspectives of organoboron compounds with the natural boron atoms in disease treatments without neutron irradiation. The main topic focuses on the therapeutic applications of organoboron compounds in the diseases of tuberculosis and antifungal activity, malaria, neglected tropical diseases and cryptosporidiosis and toxoplasmosis. Topics: Anti-Bacterial Agents; Antiparasitic Agents; Boron; Boron Neutron Capture Therapy; Bortezomib; Brain Neoplasms; Cryptosporidiosis; Dermatitis, Atopic; Eczema; Glioblastoma; Humans; Malaria; Onychomycosis; Toxoplasmosis; Tuberculosis | 2021 |
Pharmacokinetics of
Topics: Boron; Boron Compounds; Boron Neutron Capture Therapy; Brain Neoplasms; Glioblastoma; Humans; Isotopes; Melanoma; Neoplasms; Phenylalanine; Positron-Emission Tomography | 2020 |
Boron's neurophysiological effects and tumoricidal activity on glioblastoma cells with implications for clinical treatment.
Topics: Animals; Boron; Boron Compounds; Boron Neutron Capture Therapy; Brain; Brain Neoplasms; Glioblastoma; Humans; Treatment Outcome | 2019 |
Boron neutron capture therapy for glioblastoma.
Boron neutron capture therapy (BNCT) theoretically allows the preferential destruction of tumor cells while sparing the normal tissue, even if the cells have microscopically spread to the surrounding normal brain. The tumor cell-selective irradiation used in this method is dependent on the nuclear reaction between the stable isotope of boron ((10)B) and thermal neutrons, which release alpha and (7)Li particles within a limited path length (-9 microm) through the boron neutron capture reaction, (10)B(n,alpha)(7)Li. Recent clinical studies of BNCT have focused on high-grade glioma and cutaneous melanoma; however, cerebral metastasis of melanoma, anaplastic meningioma, head and neck tumor, and lung and liver metastasis have been investigated as potential candidates for BNCT. To date, more than 350 high-grade gliomas have been treated in BNCT facilities worldwide. Current clinical BNCT trials for glioblastoma (GBM) have used the epithermal beam at a medically optimized research reactor, and p-dihydroxyboryl-phenylalanine (BPA) and/or sulfhydryl borane Na(2)B(12)H(11)SH (BSH) as the boron delivery agent(s). The results from these rather small phase I/II trials for GBM appear to be encouraging, but prospective randomized clinical trials will be needed to confirm the efficacy of this theoretically promising modality. Improved tumor-targeting boron compounds and optimized administration methods, improved boron drug delivery systems, development of a hospital-based neutron source, and/or other combination modalities will enhance the therapeutic effectiveness of BNCT in the future. Topics: Boron; Boron Neutron Capture Therapy; Brain Neoplasms; Clinical Trials as Topic; Forecasting; Glioblastoma; Humans; Photons; Radiotherapy Dosage | 2008 |
8 trial(s) available for boron and Glioblastoma
Article | Year |
---|---|
Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA).
To evaluate the efficacy and safety of boron neutron capture therapy (BNCT) for glioblastoma multiforme (GBM) using a novel protocol for the boronophenylalanine-fructose (BPA-F) infusion.. This phase II study included 30 patients, 26-69 years old, with a good performance status of which 27 have undergone debulking surgery. BPA-F (900 mg BPA/kg body weight) was given i.v. over 6h. Neutron irradiation started 2h after the completion of the infusion. Follow-up reports were monitored by an independent clinical research institute.. The boron-blood concentration during irradiation was 15.2-33.7 microg/g. The average weighted absorbed dose to normal brain was 3.2-6.1 Gy (W). The minimum dose to the tumour volume ranged from 15.4 to 54.3 Gy (W). Seven patients suffered from seizures, 8 from skin/mucous problem, 5 patients were stricken by thromboembolism and 4 from abdominal disturbances in close relation to BNCT. Four patients displayed 9 episodes of grade 3-4 events (WHO). At the time for follow-up, minimum ten months, 23 out of the 29 evaluable patients were dead. The median time from BNCT treatment to tumour progression was 5.8 months and the median survival time after BNCT was 14.2 months. Following progression, 13 patients were given temozolomide, two patients were re-irradiated, and two were re-operated. Patients treated with temozolomide lived considerably longer (17.7 vs. 11.6 months). The quality of life analysis demonstrated a progressive deterioration after BNCT.. Although, the efficacy of BNCT in the present protocol seems to be comparable with conventional radiotherapy and the treatment time is shorter, the observed side effects and the requirement of complex infrastructure and higher resources emphasize the need of further phase I and II studies, especially directed to improve the accumulation of (10)B in tumour cells. Topics: Adult; Aged; Boron; Boron Compounds; Boron Neutron Capture Therapy; Brain Neoplasms; Female; Fructose; Glioblastoma; Humans; Male; Middle Aged; Phenylalanine; Quality of Life; Survival Rate; Treatment Outcome | 2008 |
Preliminary treatment planning and dosimetry for a clinical trial of neutron capture therapy using a fission converter epithermal neutron beam.
A Phase I/II clinical trial of neutron capture therapy (NCT) was conducted at Harvard-MIT using a fission converter epithermal neutron beam. This epithermal neutron beam has nearly ideal performance characteristics (high intensity and purity) and is well-suited for clinical use. Six glioblastoma multiforme (GBM) patients were treated with NCT by infusion of the tumor-selective amino acid boronophenylalanine-fructose (BPA-F) at a dose of 14.0 g/m(2) body surface area over 90 min followed by irradiation with epithermal neutrons. Treatments were planned using NCTPlan and an accelerated version of the Monte Carlo radiation transport code MCNP 4B. Treatments were delivered in two fractions with two or three fields. Field order was reversed between fractions to equalize the average blood boron concentration between fields. The initial dose in the dose escalation study was 7.0 RBEGy, prescribed as the mean dose to the whole brain volume. This prescription dose was increased by 10% to 7.7 RBEGy in the second cohort of patients. A pharmacokinetic model was used to predict the blood boron concentration for determination of the required beam monitor units with good accuracy; differences between prescribed and delivered doses were 1.5% or less. Estimates of average tumor doses ranged from 33.7 to 83.4 RBEGy (median 57.8 RBEGy), a substantial improvement over our previous trial where the median value of the average tumor dose was 25.8 RBEGy. Topics: Aged; Boron; Boron Compounds; Boron Neutron Capture Therapy; Brain Neoplasms; Fast Neutrons; Female; Fructose; Glioblastoma; Humans; Male; Middle Aged; Monte Carlo Method; Radiotherapy Dosage; Radiotherapy Planning, Computer-Assisted | 2004 |
Biodistribution studies of boronophenylalanine-fructose in melanoma and brain tumor patients in Argentina.
A study of the (10)B-enriched p-boronophenylalanine-fructose complex ((10)BPA-F) infusion procedure in potential BNCT patients, including four melanoma of extremities and two high-grade gliomas (glioblastoma and ganglioglioma) was performed. T/B and S/B ratios for (10)B concentrations in tumor (T), blood (B) and skin (S) were determined. The T/B ratio for the glioblastoma was in the 1.8-3.4 range. The ganglioglioma did not show any significant boron uptake. For the nodular metastasic melanoma T/B values were between 1.5 and 2.6 (average 2.1+/-0.4), corresponding to the lower limit of the mean values reported for different melanoma categories. This result might suggest a lower boron uptake for nodular metastasic melanomas. S/B was 1.5+/-0.4. An open two-compartment pharmacokinetic model was applied to predict the boron concentration during the course and at the end of a BNCT irradiation. Topics: Adult; Aged; Argentina; Boron; Boron Compounds; Boron Neutron Capture Therapy; Brain Neoplasms; Female; Fructose; Ganglioglioma; Glioblastoma; Humans; Male; Melanoma; Middle Aged | 2004 |
Boron concentrations in brain during boron neutron capture therapy: in vivo measurements from the phase I trial EORTC 11961 using a gamma-ray telescope.
Gamma-ray spectroscopic scans to measure boron concentrations in the irradiated volume were performed during treatment of 5 patients suffering from brain tumors with boron neutron capture therapy (BNCT). In BNCT, the dose that is meant to be targeted primarily to the tumor is the dose coming from the reaction 10B(n,alpha)7Li, which is determined by the boron concentration in tissue and the thermal neutron fluence rate. The boron distribution throughout the head of the patient during the treatment is therefore of major interest. The detection of the boron distribution during the irradiation was until now not possible.. Five patients suffering from glioblastoma multiforme and treated with BNCT in a dose escalation study were administered the boron compound, boron sulfhydryl (BSH; Na(2)B(12)H(11)SH). Boron concentrations were reconstructed from measurements performed with the gamma-ray telescope which detects locally the specific gamma rays produced by neutron capture in 10B and 1H.. For all patients, at a 10B concentration in blood of 30 ppm, the boron concentration in nonoperated areas of the brain was very low, between 1 and 2.5 ppm. In the target volume, which included the area where the tumor had been removed and where remaining tumor cells have to be assumed, much higher boron concentrations were measured with large variations from one patient to another. Superficial tissue contained a higher concentration of 10B than the nonoperated areas of the brain, ranging between 8 and 15 ppm.. The measured results correspond with previous tissue uptake studies, confirming that normal brain tissue hardly absorbs the boron compound BSH. Gamma-ray telescope measurements seem to be a promising method to provide information on the biodistribution of boron during therapy. Furthermore, it also opens the possibility of in vivo dosimetry. Topics: Boron; Boron Compounds; Boron Neutron Capture Therapy; Brain; Brain Chemistry; Brain Neoplasms; Glioblastoma; Humans; Sulfhydryl Compounds | 2003 |
Treatment planning and dosimetry for the Harvard-MIT Phase I clinical trial of cranial neutron capture therapy.
A Phase I trial of cranial neutron capture therapy (NCT) was conducted at Harvard-MIT. The trial was designed to determine maximum tolerated NCT radiation dose to normal brain.. Twenty-two patients with brain tumors were treated by infusion of boronophenylalanine-fructose (BPA-f) followed by exposure to epithermal neutrons. The study began with a prescribed biologically weighted dose of 8.8 RBE (relative biologic effectiveness) Gy, escalated in compounding 10% increments, and ended at 14.2 RBE Gy. BPA-f was infused at a dose 250-350 mg/kg body weight. Treatments were planned using MacNCTPlan and MCNP 4B. Irradiations were delivered as one, two, or three fields in one or two fractions.. Peak biologically weighted normal tissue dose ranged from 8.7 to 16.4 RBE Gy. The average dose to brain ranged from 2.7 to 7.4 RBE Gy. Average tumor dose was estimated to range from 14.5 to 43.9 RBE Gy, with a mean of 25.7 RBE Gy.. We have demonstrated that BPA-f-mediated NCT can be precisely planned and delivered in a carefully controlled manner. Subsequent clinical trials of boron neutron capture therapy at Harvard and MIT will be initiated with a new high-intensity, high-quality epithermal neutron beam. Topics: Adult; Aged; Boron; Brain; Brain Neoplasms; Female; Glioblastoma; Humans; Male; Melanoma; Middle Aged; Neutron Capture Therapy; Neutrons; Phantoms, Imaging; Radiometry; Radiotherapy Planning, Computer-Assisted; Tomography, X-Ray Computed | 2002 |
A pharmacokinetic model for the concentration of 10B in blood after boronophenylalanine-fructose administration in humans.
An open two-compartment model has been developed for predicting (10)B concentrations in blood after intravenous infusion of the l-p-boronophenylalanine-fructose complex (BPA-F) in humans and derived from studies of pharmacokinetics in 24 patients in the Harvard-MIT Phase I clinical trials of BNCT. The (10)B concentration profile in blood exhibits a characteristic rise during the infusion to a peak of approximately 32 microg/g (for infusion of 350 mg/kg over 90 min) followed by a biphasic exponential clearance profile with half-lives of 0.34 +/- 0.12 and 9.0 +/- 2.7 h, due to redistribution and primarily renal elimination, respectively. The model rate constants k(1), k(2) and k(3) are 0.0227 +/- 0.0064, 0.0099 +/- 0.0027 and 0.0052 +/- 0.0016 min(-1), respectively, and the central compartment volume of distribution, V(1), is 0.235 +/- 0.042 kg/kg. The validity of this model was demonstrated by successfully predicting the average pharmacokinetic response for a cohort of patients who were administered BPA-F using an infusion schedule different from those used to derive the parameters of the model. Furthermore, the mean parameters of the model do not differ for cohorts of patients infused using different schedules. Topics: Adult; Aged; Boron; Boron Compounds; Boron Neutron Capture Therapy; Brain Neoplasms; Female; Fructose; Glioblastoma; Humans; Infusions, Intravenous; Male; Melanoma; Middle Aged; Models, Biological; Phenylalanine; Skin Neoplasms | 2001 |
Boron neutron-capture therapy (BNCT) for glioblastoma multiforme (GBM) using the epithermal neutron beam at the Brookhaven National Laboratory.
Boron neutron-capture therapy (BNCT) is a binary form of radiation therapy based on the nuclear reactions that occur when boron (10B) is exposed to thermal neutrons. Preclinical studies have demonstrated the therapeutic efficacy of p-boronophenylalanine (BPA)-based BNCT. The objectives of the Phase I/II trial were to study the feasibility and safety of single-fraction BNCT in patients with GBM.. The trial design required (a) a BPA biodistribution study performed at the time of craniotomy; and (b) BNCT within approximately 4 weeks of the biodistribution study. From September 1994 to July 1995, 10 patients were treated. For biodistribution, patients received a 2-hour intravenous (i.v.) infusion of BPA-fructose complex (BPA-F). Blood samples, taken during and after infusion, and multiple tissue samples collected during surgical debulking were analyzed for 10B concentration. For BNCT, all patients received a dose of 250 mg BPA/kg administered by a 2-hour i.v. infusion of BPA-F, followed by neutron beam irradiation at the Brookhaven Medical Research Reactor (BMRR). The average blood 10B concentrations measured before and during treatment were used to calculate the time of reactor irradiation that would deliver the prescribed dose.. 10B concentrations in specimens of scalp and tumor were higher than in blood by factors of approximately 1.5 and approximately 3.5, respectively. The 10B concentration in the normal brain was < or = that in the blood; however, for purposes of estimating radiation doses to normal brain endothelium, it was always assumed to be equal to blood. BNCT doses are expressed as gray-equivalent (Gy-Eq), which is the sum of the various physical dose components multiplied to appropriate biologic effectiveness factors. The dose to a 1-cm3 volume where the thermal flux reached a maximum was 10.6 +/- 0.3 Gy-Eq in 9 patients and 13.8 Gy-Eq in 1 patient. The minimum dose in tumor ranged from 20 to 32.3 Gy-Eq. The minimum dose in the target volume (tumor plus 2 cm margin) ranged from 7.8 to 16.2 Gy-Eq. Dose to scalp ranged from 10 to 16 Gy-Eq. All patients experienced in-field alopecia. No CNS toxicity attributed to BNCT was observed. The median time to local disease progression following BNCT was 6 months (range 2.7 to 9.0). The median time to local disease progression was longer in patients who received a higher tumor dose. The median survival time from diagnosis was 13.5 months.. It is feasible to safely deliver a single fraction of BPA-based BNCT. At the dose prescribed, the patients did not experience any morbidity. To further evaluate the therapeutic efficacy of BNCT, a dose-escalation study delivering a minimum target volume dose of 17 Gy-Eq is in progress. Topics: Aged; Boron; Boron Compounds; Boron Neutron Capture Therapy; Brain Neoplasms; Dose-Response Relationship, Radiation; Feasibility Studies; Glioblastoma; Humans; Middle Aged; Phenylalanine; Radiation-Sensitizing Agents; Radiotherapy Dosage; Treatment Outcome | 1998 |
Fractionation in boron neutron capture therapy.
Topics: Boron; Brain Neoplasms; Clinical Trials as Topic; Glioblastoma; Humans; Neutrons; Radiation; Radiotherapy; Radiotherapy Dosage | 1989 |
41 other study(ies) available for boron and Glioblastoma
Article | Year |
---|---|
The dual role of boron in vitro neurotoxication of glioblastoma cells via SEMA3F/NRP2 and ferroptosis signaling pathways.
Glioblastoma multiform (GBM) is a malignant tumor cancer that originates from the star-shaped glial support tissues, namely astrocytes, and it is associated with a poor prognosis in the brain. The GBM has no cure, and chemotherapy, radiation therapy, and immunotherapy are all ineffective. A certain dose of Boric acid (BA) has many biochemical effects, conspicuously over antioxidant/oxidant rates. This article sought to investigate the modifies of various doses of BA on the glioblastoma concerning cytotoxicity, ferroptosis, apoptosis, and semaphorin-neuropilin signaling pathway. The Cytotoxic activity and cell viability of BA (0.39-25 mM) in C6 cells were tested at 24, 48, and 72 h using 3-(4,5-dimethylthiazol, 2-yl)-2,5-diphenyl tetrazolium bromide (MTT). The IC Topics: Antioxidants; Boron; Cell Line, Tumor; Ferroptosis; Glioblastoma; Humans; Membrane Proteins; Nerve Tissue Proteins; Neuropilins; Oxidants; Semaphorins; Signal Transduction | 2023 |
Proton boron capture therapy (PBCT) induces cell death and mitophagy in a heterotopic glioblastoma model.
Despite aggressive therapeutic regimens, glioblastoma (GBM) represents a deadly brain tumor with significant aggressiveness, radioresistance and chemoresistance, leading to dismal prognosis. Hypoxic microenvironment, which characterizes GBM, is associated with reduced therapeutic effectiveness. Moreover, current irradiation approaches are limited by uncertain tumor delineation and severe side effects that comprehensively lead to unsuccessful treatment and to a worsening of the quality of life of GBM patients. Proton beam offers the opportunity of reduced side effects and a depth-dose profile, which, unfortunately, are coupled with low relative biological effectiveness (RBE). The use of radiosensitizing agents, such as boron-containing molecules, enhances proton RBE and increases the effectiveness on proton beam-hit targets. We report a first preclinical evaluation of proton boron capture therapy (PBCT) in a preclinical model of GBM analyzed via μ-positron emission tomography/computed tomography (μPET-CT) assisted live imaging, finding a significant increased therapeutic effectiveness of PBCT versus proton coupled with an increased cell death and mitophagy. Our work supports PBCT and radiosensitizing agents as a scalable strategy to treat GBM exploiting ballistic advances of proton beam and increasing therapeutic effectiveness and quality of life in GBM patients. Topics: Boron; Cell Death; Glioblastoma; Humans; Mitophagy; Protons; Quality of Life; Radiation-Sensitizing Agents; Tumor Microenvironment | 2023 |
Investigation of cytotoxic antiproliferative and antiapoptotic effects of nanosized boron phosphate filled sodium alginate composite on glioblastoma cancer cells.
The effects of nanosized boron phosphate-filled sodium alginate composite gel (SA/BP) on the biological characteristics of three types of glioblastoma multiforme (GBM) cells (C6, U87MG and T98G) were examined in this study. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay was used to determine the cytotoxicity of the composite gel on GBM, which was then compared to L929 healthy cells. Furthermore, wound healing, apoptosis, and colony formation capacities were evaluated. The investigation revealed that the SA/BP composite gel was successful in all GBM cells and could be used as a treatment agent for GBM and/or other invasive cancer types.. According to the results, the SA/BP composite gel had no effect on healthy fibroblast cells but had a lethal effect on all glioblastoma cells. Additionally, the wound healing method was used to examine the effect of the SA/BP composite gel on cell migration. It was discovered that the wound closed in 24 h in untreated control group cells, while the SA/BP composite gel closed up to 29.62%, 26.77% and 11.31% of the wound for C6, U87MG and T98G cell lines respectively. SA/BP significantly reduced cell migration in cancer cells. The effect of the generated SA/BP composite gel on cell colony development was assessed using a colony formation assay, and the cells reduced colony formation for all GBMs. It was roughly 45% for 24 h and 30% for 48 h when compared to the control group for C6 cells, 33%(24 h) and 40%(48 h) for U87MG cells, 40%(24 h) and 43%(48 h) for T98G cells. DAPI(4',6-Diamidino-2-phenylindole) and JC-1(5,5',6,6'-Tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine, iodide) staining to evaluate apoptosis revealed that the SA/BP composite gel dramatically enhanced the frequency of all GBMs undergoing apoptosis.. In line with experimental findings, it was observed that the SA/BP composite gel system did not affect healthy fibroblast cells but had a cytotoxic effect on glioblastoma cells, significantly reduced cell migration and colony-forming capacity of cells, and significantly increased apoptosis and depolarization of cell membranes. Based on all these findings, it can be said that SA/BP composite gel has cytotoxic, antiproliferative and antiapoptotic effects on different glioblastoma cells. Topics: Alginates; Antineoplastic Agents; Apoptosis; Boron; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Glioblastoma; Humans; Phosphates | 2023 |
Exploring the Physical and Biological Aspects of BNCT with a Carboranylmethylbenzo[
Boron neutron capture therapy (BNCT) is a re-emerging technique for selectively killing tumor cells. Briefly, the mechanism can be described as follows: after the uptake of boron into cells, the thermal neutrons trigger the fission of the boron atoms, releasing the α-particles and recoiling lithium particles and high-energy photons that damage the cells. We performed a detailed study of the reactor dosimetry, cellular dose assessment, and radiobiological effects induced by BNCT in glioblastoma (GBM) cells. At maximum reactor power, neutron fluence rates were ϕ0 = 6.6 × 107 cm−2 s−1 (thermal) and θ = 2.4 × 104 cm−2 s−1 with a photon dose rate of 150 mGy·h−1. These values agreed with simulations to within 85% (thermal neutrons), 78% (epithermal neutrons), and 95% (photons), thereby validating the MCNPX model. The GEANT4 simulations, based on a realistic cell model and measured boron concentrations, showed that >95% of the dose in cells was due to the BNC reaction. Carboranylmethylbenzo[b]acridone (CMBA) is among the different proposed boron delivery agents that has shown promising properties due to its lower toxicity and important cellular uptake in U87 glioblastoma cells. In particular, the results obtained for CBMA reinforce radiobiological effects demonstrating that damage is mostly induced by the incorporated boron with negligible contribution from the culture medium and adjacent cells, evidencing extranuclear cell radiosensitivity. Topics: Boron; Boron Neutron Capture Therapy; Glioblastoma; Humans; Neutrons; Photons | 2022 |
Cytotoxic Effect of Boron Application on Glioblastoma Cells.
To investigate the cytotoxic effects of boron application at different doses on U-87 MG glioblastoma cells.. The T98G (ATCC® CRL-1690?) glioblastoma cell strain used in the study was acquired from the American Type Culture Collection (ATCC) (Manassas, USA). Boric acid solution was prepared by mechanical mixing in the medium. Afterwards, 2.5 mM, 25 mM and 50 mM boron were each added to U87-MG glioblastoma cells and incubated for 48 hours. The cytotoxic effects on the cells was determined using the MTT (Methylthiazole diphenyl tetrazolium) test 48 hours after boron application.. IC50 value was detected as 17 mM in the 48-hour boric acid application on U-87 MG glioblastoma cells.. Boron treatment might be an effective approach for glioblastoma. Topics: Boric Acids; Boron; Boron Neutron Capture Therapy; Brain Neoplasms; Cell Line, Tumor; Cytotoxins; Dose-Response Relationship, Drug; Glioblastoma; Humans | 2021 |
Tumor Cell-Specific 2'-Fluoro RNA Aptamer Conjugated with
Boron neutron capture therapy (BNCT) is a binary radiotherapeutic approach to the treatment of malignant tumors, especially glioblastoma, the most frequent and incurable brain tumor. For successful BNCT, a boron-containing therapeutic agent should provide selective and effective accumulation of Topics: Aptamers, Nucleotide; Boron; Boron Compounds; Boron Neutron Capture Therapy; Brain Neoplasms; Cell Line; Cell Line, Tumor; Cell Proliferation; Glioblastoma; Humans; Isotopes; Neutrons | 2021 |
Design, Synthesis, and Evaluation of Lipopeptide Conjugates of Mercaptoundecahydrododecaborate for Boron Neutron Capture Therapy.
We developed new Topics: Borohydrides; Boron; Boron Neutron Capture Therapy; Cell Line, Tumor; Cell Survival; Drug Design; Glioblastoma; Humans; Lipopeptides; Radiation-Sensitizing Agents; Sulfhydryl Compounds | 2019 |
Combining magnetic nanoparticles and icosahedral boron clusters in biocompatible inorganic nanohybrids for cancer therapy.
The potential biomedical applications of the MNPs nanohybrids coated with m-carboranylphosphinate (1-MNPs) as a theranostic biomaterial for cancer therapy were tested. The cellular uptake and toxicity profile of 1-MNPs from culture media by human brain endothelial cells (hCMEC/D3) and glioblastoma multiform A172 cell line were demonstrated. Prior to testing 1-MNPs' in vitro toxicity, studies of colloidal stability of the 1-MNPs' suspension in different culture media and temperatures were carried out. TEM images and chemical titration confirmed that 1-MNPs penetrate into cells. Additionally, to explore 1-MNPs' potential use in Boron Neutron Capture Therapy (BNCT) for treating cancer locally, the presence of the m-carboranyl coordinated with the MNPs core after uptake was proven by XPS and EELS. Importantly, thermal neutrons irradiation in BNCT reduced by 2.5 the number of cultured glioblastoma cells after 1-MNP treatment, and the systemic administration of 1-MNPs in mice was well tolerated with no major signs of toxicity. Topics: Animals; Biocompatible Materials; Boron; Cell Line, Tumor; Cell Proliferation; Cell Survival; Colloids; Diffusion; Endothelial Cells; Glioblastoma; Humans; Hydrodynamics; Ligands; Magnetite Nanoparticles; Mice; Neoplasms; Neutrons; Suspensions | 2019 |
N(4)-[B-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)methyl]-2'-deoxycytidine as a potential boron delivery agent with respect to glioblastoma.
Glioblastoma multiforme (GBM) is a central nervous system tumor of grade IV, according to the WHO classification, extremely resistant to all currently used forms of therapy, including resection, radiotherapy, chemotherapy or combined therapy. Therefore, more effective treatment strategies of this tumor are needed, with boron neutron capture therapy (BNCT) being a potential solution, provided a proper cancer cells-targeted 10B delivery agent is found. In search of such an agent, toxicity and capacity to target DNA of a boronated derivative of 2'-deoxycytidine, N(4)-[B-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)methyl]-2'-deoxycytidine (1), was tested against human tumor vs. normal cells. The present in vitro results revealed 1 to show low toxicity for human U-118 MG glioma cells (in the mM range) and even by 3-4 - fold lower against normal human fibroblasts. In accord, induction of apoptosis dependent on caspase-3 and caspase-7 was detected at high (>20mM) concentration of 1. Although demonstrated to be susceptible to phosphorylation by human deoxycytidine kinase and to undergo incorporation in cellular DNA, the boron analogue did not disturb cell proliferation when applied at non-toxic concentrations and showed low toxicity to a model metazoan organism, Caenorhabditis elegans. Thus, N(4)-[B-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan)methyl]-2'-deoxycytidine appears a promising candidate for a 10B delivery agent to be used in BNCT, with C. elegans indicated as a good model for in vivo studies. Topics: Animals; Apoptosis; Boron; Boron Compounds; Brain Neoplasms; Caenorhabditis elegans; Cell Count; Cell Line, Tumor; Cell Proliferation; Cell Shape; Deoxycytidine; DNA; Glioblastoma; Mass Spectrometry; Models, Animal; Substrate Specificity | 2017 |
Biokinetic analysis of tissue boron (¹⁰B) concentrations of glioma patients treated with BNCT in Finland.
A total of 98 patients with glioma were treated with BPA-F-mediated boron neutron capture therapy (BNCT) in Finland from 1999 to 2011. Thirty-nine (40%) had undergone surgery for newly diagnosed glioblastoma and 59 (60%) had malignant glioma recurrence after surgery. In this study we applied a closed 3-compartment model based on dynamic (18)F-BPA-PET studies to estimate the BPA-F concentrations in the tumor and the normal brain with time. Altogether 22 patients with recurrent glioma, treated within the context of a clinical trial, were evaluated using their individual measured whole blood (10)B concentrations as an input to the model. The delivered radiation doses to tumor and the normal brain were recalculated based on the modeled (10)B concentrations in the tissues during neutron irradiation. The model predicts from -7% to +29% (average, +11%) change in the average tumor doses as compared with the previously estimated doses, and from 17% to 61% (average, 36%) higher average normal brain doses than previously estimated due to the non-constant tumor-to-blood concentration ratios and considerably higher estimated (10)B concentrations in the brain at the time of neutron irradiation. Topics: Boron; Boron Neutron Capture Therapy; Brain Neoplasms; Finland; Glioblastoma; Humans; Radiotherapy Dosage | 2015 |
(9)Be(d,n)(10)B-based neutron sources for BNCT.
In the frame of accelerator-based BNCT, the (9)Be(d,n)(10)B reaction was investigated as a possible source of epithermal neutrons. In order to determine the configuration in terms of bombarding energy, target thickness and Beam Shaping Assembly (BSA) design that results in the best possible beam quality, a systematic optimization study was carried out. From this study, the optimal configuration resulted in tumor doses ≥40Gy-Eq, with a maximum value of 51Gy-Eq at a depth of about 2.7cm, in a 60min treatment. The optimal configuration was considered for the treatment planning assessment of a real Glioblastoma Multiforme case. From this, the resulted dose performances were comparable to those obtained with an optimized (7)Li(p,n)-based neutron source, under identical conditions and subjected to the same clinical protocol. Topics: Boron; Boron Neutron Capture Therapy; Brain Neoplasms; Equipment Design; Equipment Failure Analysis; Glioblastoma; Humans; Isotopes; Materials Testing; Neutrons; Particle Accelerators; Radiometry; Radiotherapy Planning, Computer-Assisted; Scattering, Radiation | 2014 |
Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular-scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS).
Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 ((10)B) atoms to individual tumour cells. Cell killing results from the (10)B (n, α)(7) Li neutron capture and fission reactions that occur if a sufficient number of (10)B atoms are localized in the tumour cells. Intranuclear (10)B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of (10)B atoms reflects both bound and free pools of boron in individual tumour cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular-scale resolution by clinically applicable techniques such as positron emission tomography and magnetic resonance imaging. In this study, a secondary ion mass spectrometry based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high-grade gliomas, recurrent tumours of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumour cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a low phenylalanine diet prior to the initiation of BNCT. Since BPA currently is used clinically for BNCT, our observations may have direct relevance to future clinical studies utilizing this agent and provides support for individualized treatment planning regimens rather than the use of fixed BPA infusion protocols. Topics: Boron; Boron Compounds; Boron Neutron Capture Therapy; Calcium; Cell Line, Tumor; Cell Tracking; Glioblastoma; Humans; Intracellular Space; Isotopes; Microscopy, Confocal; Phenylalanine; Potassium; Sodium; Spectrometry, Mass, Secondary Ion; Time Factors | 2014 |
PET pharmacokinetic analysis to estimate boron concentration in tumor and brain as a guide to plan BNCT for malignant cerebral glioma.
To plan the optimal BNCT for patients with malignant cerebral glioma, estimation of the ratio of boron concentration in tumor tissue against that in the surrounding normal brain (T/N ratio of boron) is important. We report a positron emission tomography (PET) imaging method to estimate T/N ratio of tissue boron concentration based on pharmacokinetic analysis of amino acid probes.. Twelve patients with cerebral malignant glioma underwent 60 min dynamic PET scanning of brain after bolus injection of (18)F-borono-phenyl-alanine (FBPA) with timed arterial blood sampling. Using kinetic parameter obtained by this scan, T/N ratio of boron concentration elicited by one-hour constant infusion of BPA, as performed in BNCT, was simulated on Runge-Kutta algorithm. (11)C-methionine (MET) PET scan, which is commonly used in worldwide PET center as brain tumor imaging tool, was also performed on the same day to compare the image characteristics of FBPA and that of MET.. PET glioma images obtained with FBPA and MET are almost identical in all patients by visual inspection. Estimated T/N ratio of tissue boron concentration after one-hour constant infusion of BPA, T/N ratio of FBPA on static condition, and T/N ratio of MET on static condition showed significant linear correlation between each other.. T/N ratio of boron concentration that is obtained by constant infusion of BPA during BNCT can be estimated by FBPA PET scan. This ratio can also be estimated by MET-PET imaging. As MET-PET study is available in many clinical PET center, selection of candidates for BNCT may be possible by MET-PET images. Accurate planning of BNCT may be performed by static images of FBPA PET. Use of PET imaging with amino acid probes may contribute very much to establish an appropriate application of BNCT for patients with malignant glioma. Topics: Algorithms; Astrocytoma; Boron; Boron Compounds; Boron Neutron Capture Therapy; Brain Neoplasms; Carbon Radioisotopes; Glioblastoma; Glioma; Humans; Methionine; Phenylalanine; Positron-Emission Tomography; Radiation-Sensitizing Agents; Radiotherapy Planning, Computer-Assisted | 2009 |
Biological evaluation of boronated unnatural amino acids as new boron carriers.
There is a pressing need for new and more efficient boron delivery agents to tumor cells for use in boron neutron capture therapy (BNCT). A class of boronated unnatural cyclic amino acids has demonstrated a remarkable selectivity toward tumors in animal and cell culture models, far superior to currently used agents in clinical BNCT. One of these amino acids, 1-amino-3-boronocyclopentanecarboxylic acid (ABCPC), has shown a tumor to blood ratio of 8 and a tumor to normal brain ratio of nearly 21 in a melanoma bearing mouse model. This work represents further biological characterization of this compound for tumor targeting in an EMT6 murine mammary carcinoma mouse model and a T98G human glioblastoma cell line. Female BALB/c mice bearing EMT6 tumors were injected with the fructose complex form of racemic mixtures of cis and trans isomers of ABCPC in identical concentrations. Boron concentrations were measured in the tumor, blood, brain, skin, and liver tissues at 1, 3, and 5 h post-injection. These observations revealed a remarkable difference in racemic mixtures of cis and trans isomers in tumor targeting by boron. This implies that further separation of the L and D forms of this compound may enhance tumor targeting to an even higher degree than that provided by the racemic mixtures. Since the uptake measurements were made in homogenized tumor and normal tissues, little is known about the subcellular location of the boron arising from the various isomeric forms of the amino acid. To study subcellular delivery of boron from ABCPC in T98G human glioblastoma cells, we employed secondary ion mass spectrometry (SIMS) based technique of ion microscopy, which is capable of quantitatively imaging isotopic (elemental) gradients in cells and tissues at 500 nm spatial resolution. The T98G cells were exposed to the nutrient medium containing 100 ppm boron equivalent of a mixture of both L and D isomers of ABCPC in the form of a fructose complex for 1 h. Following this treatment, the cells were fast frozen, freeze-fractured, and freeze-dried for SIMS analysis. Within an hour of exposure, ABCPC provided partitioning of intracellular to extracellular boron of 3/1. SIMS imaging revealed that boron from ABCPC was distributed throughout the cell, including the nucleus. This level of boron delivery within an hour of exposure is superior to p-boronophenylalanine (BPA) and sodium borocaptate (BSH), which have been previously studied by SIMS in the same cell line. These encouragi Topics: Amino Acids; Animals; Boron; Boron Compounds; Boron Neutron Capture Therapy; Cell Line, Tumor; Drug Carriers; Female; Glioblastoma; Humans; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Molecular Structure; Radiation-Sensitizing Agents; Spectrometry, Mass, Secondary Ion | 2009 |
Comments to article: Henriksson R et al., Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA) Radiother Oncol (2008).
Topics: Adult; Aged; Boron; Boron Compounds; Boron Neutron Capture Therapy; Brain Neoplasms; Clinical Trials, Phase II as Topic; Female; Fructose; Glioblastoma; Humans; Male; Middle Aged; Phenylalanine; Quality of Life; Survival Rate; Treatment Outcome | 2008 |
Quantitative subcellular imaging of boron compounds in individual mitotic and interphase human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS).
Boron measurements at subcellular scale are essential in boron neutron capture therapy (BNCT) of cancer as the nuclear localization of boron-10 atoms can enhance the effectiveness of killing individual tumour cells. Since tumours contain a heterogeneous population of cells in interphase as well as in the M phase (mitotic division) of the cell cycle, it is important to evaluate the subcellular distribution of boron in both phases. In this work, the secondary ion mass spectrometry (SIMS) based imaging technique of ion microscopy was used to quantitatively image boron from two BNCT agents, clinically used p-boronophenylalanine (BPA) and 3-[4-(o-carboran-1-yl)butyl]thymidine (N4), in mitotic metaphase and interphase human glioblastoma T98G cells. N4 belongs to a class of experimental BNCT agents, designated 3-carboranyl thymidine analogues (3CTAs), which presumably accumulate selectively in cancer cells due to a process referred to as kinase-mediated trapping (KMT). The cells were exposed to BPA for 1 h and N4 for 2 h. A CAMECA IMS-3f SIMS ion microscope instrument capable of producing isotopic images with 500 nm spatial resolution was used in the study. Observations were made in cryogenically prepared fast frozen, and freeze-fractured, freeze-dried cells. Three discernible subcellular regions were studied: the nucleus, a characteristic mitochondria-rich perinuclear cytoplasmic region, and the remaining cytoplasm in interphase T98G cells. In metaphase cells, the chromosomes and the cytoplasm were studied for boron localization. Intracellular concentrations of potassium and sodium also were measured in each cell in which the subcellular boron concentrations were imaged. Since the healthy cells maintain a K/Na ratio of approximately 10 due to the presence of Na-K-ATPase in the plasma membrane of mammalian cells, these measurements provided validation for cryogenic sample preparation and indicated the analysis healthy, well preserved cells. The BPA-treated interphase cells revealed significantly lower concentrations of boron in the perinuclear mitochondria-rich cytoplasmic region as compared to the remaining cytoplasm and the nucleus, which were not significantly different from each other. In contrast, the BPA-treated metaphase cells revealed significantly lower concentration of boron in their chromosomes than cytoplasm. In addition, the cytoplasm of metaphase cells contained significantly less boron than the cytoplasm of interphase cells. These observations pro Topics: Boron; Boron Compounds; Boron Neutron Capture Therapy; Brain Neoplasms; Cell Line; Glioblastoma; Humans; Interphase; Mitosis; Phenylalanine; Spectrometry, Mass, Secondary Ion | 2008 |
1H MRS studies in the Finnish boron neutron capture therapy project: detection of 10B-carrier, L-p-boronophenylalanine-fructose.
This article summarizes the current status of 1H MRS in detecting and quantifying a boron neutron capture therapy (BNCT) boron carrier, L-p-boronophenylalanine-fructose (BPA-F) in vivo in the Finnish BNCT project. The applicability of 1H MRS to detect BPA-F is evaluated and discussed in a typical situation with a blood containing resection cavity within the gross tumour volume (GTV). 1H MRS is not an ideal method to study BPA concentration in GTV with blood in recent resection cavity. For an optimal identification of BPA signals in the in vivo 1H MR spectrum, both pre- and post-infusion 1H MRS should be performed. The post-infusion spectroscopy studies should be scheduled either prior to or, less optimally, immediately after the BNCT. The pre-BNCT MRS is necessary in order to utilise the MRS results in the actual dose planning. Topics: Adult; Aged; Boron; Boron Compounds; Boron Neutron Capture Therapy; Brain Neoplasms; Carcinoma; Female; Finland; Fructose; Glioblastoma; Humans; Hydrogen; Isotopes; Magnetic Resonance Spectroscopy; Male; Neoplasm Recurrence, Local; Paranasal Sinus Neoplasms; Phantoms, Imaging; Plasma; Radiopharmaceuticals | 2005 |
Accumulation of boron in human malignant glioma cells in vitro is cell type dependent.
It has been shown that human malignant glioma tumours consist of several subpopulations of tumour cells. Due to heterogeneity and different degrees of vascularisation cell subpopulations possess varying resistance to chemo- or radiation therapy. Therefore, therapy is dependent on the ability to specifically target a tumour cell. Boron neutron capture therapy (BNCT) is a bimodal method, in radiation therapy, taking advantage of the ability of the stable isotope boron-10 to capture neutrons. It results in disintegration products depositing large amounts of energy within a short length, approximately one cell diameter. Thereby, selective irradiation of a target cell may be accomplished if a sufficient amount of boron has been accumulated and hence the cell-associated boron concentration is of critical importance. The accumulation of boron, boronophenylalanine (BPA), was investigated in two human glioma cell subpopulations and a human fibroblast cell line in vitro. The cells were incubated at low boron concentrations (0-5 microg B/ml). Oil filtration was then used for separation of extracellular and cell-associated boron. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was used for boron determination. Significant (P < 0.05) differences in accumulation ratio (relation between cell-associated and extracellular boron concentration) between human malignant glioma cell lines were found. Human fibroblasts, used to represent normal cells, showed a growth-dependent uptake and a lower accumulation ratio than the glioma cells. Our findings indicate that BPA concentration, incubation time and differences in boron uptake between cell subpopulations should be considered in BNCT. Topics: Boranes; Boron; Boron Neutron Capture Therapy; Brain Neoplasms; Cell Line; Cell Line, Tumor; Fibroblasts; Glioblastoma; Glioma; Humans; Phenylalanine | 2004 |
Imaging of fluorine and boron from fluorinated boronophenylalanine in the same cell at organelle resolution by correlative ion microscopy and confocal laser scanning microscopy.
There is a clear need for a technique that provides subcellular locations of fluorine and boron atoms from fluorinated neutron capture agents because positron emission tomography is being tested as a tool for providing tumor boron concentrations in boron neutron capture therapy.. Ion microscopy was used in combination with confocal laser scanning microscopy to investigate the subcellular locations of fluorine and boron from fluorinated p-boronophenylalanine (F-BPA) in human glioblastoma T98G cells. The fluorinated compound was also compared with p-boronophenylalanine (BPA) for delivery of boron after a clinically relevant 6-h exposure. Mitochondria were identified by rhodamine 123 labeling. A strict cryogenic sample preparation was used, and measurements were made in fractured freeze-dried cells.. The nucleus, a perinuclear mitochondria-rich cytoplasmic region, and the remaining cytoplasm were the three subcellular regions identified in individual T98G cells. In cells treated with F-BPA, the mitochondria-rich perinuclear cytoplasmic region exhibited significantly lower fluorine and boron signals than the remaining cytoplasm and the nuclei. Ion microscopy observations revealed a nearly 1:1 distribution of fluorine and boron in subcellular compartments. Quantitative subcellular observations indicated that there was no significant difference in boron delivery to subcellular compartments between the F-BPA and nonfluorinated BPA.. These observations provide the first direct evidence that fluorine and boron from fluorinated BPA are cocompartmentalized in cells and that the fluorinated compound is as efficient for boron delivery as the nonfluorinated BPA at a clinically relevant time point. These observations provide strong support for the use of F-BPA in positron emission tomography biodistribution studies for boron neutron capture therapy. Topics: Boron; Boron Compounds; Brain Neoplasms; Fluorine; Glioblastoma; Humans; Image Processing, Computer-Assisted; Ions; Microscopy, Confocal; Mitochondria; Models, Chemical; Phenylalanine; Radiation-Sensitizing Agents; Time Factors; Tomography, Emission-Computed; Tumor Cells, Cultured | 2002 |
Quantitative subcellular secondary ion mass spectrometry (SIMS) imaging of boron-10 and boron-11 isotopes in the same cell delivered by two combined BNCT drugs: in vitro studies on human glioblastoma T98G cells.
Ion microscopy was used for subcellular quantitative imaging of the isotopes 10B and 11B in the same cell to evaluate boron delivery using a mixture of two neutron capture therapy drugs, p-boronophenylalanine-fructose (BPA-F) and sodium borocaptate (BSH). The application of 10B-labeled BPA-F and 11B-labeled BSH allowed independent imaging of both 10B and 11B in the same cell using a CAMECA IMS-3f ion microscope. Mixed-drug treatments were compared to single-drug exposures given under identical conditions. 10BPA-F delivered 10B heterogeneously to T98G human glioblastoma cells, with a significantly reduced concentration in an organelle-rich perinuclear region. The intracellular distribution of 11B from 11BSH contrasted with that of the 10B from 10BPA-F, with 11B distributed nearly homogeneously throughout cells. The subcellular distributions of 10B and 11B were sustained in mixed-drug treatments and resembled their localizations after the single-drug treatments. In both single- and mixed-drug treatments, cellular levels of 10B from 10BPA-F nearly doubled between 1 h and 6 h, with a 3:1 intracellular to nutrient medium partitioning, while cellular levels of 11BSH remained essentially unchanged. The net effect of the combined treatment with 10BPA-F and 11BSH was an additive delivery of boron to cells. This study introduces a novel approach for checking potential synergistic, antagonistic or simple additive delivery of two mixed boronated compounds in cellular/subcellular compartments. Topics: Borohydrides; Boron; Boron Compounds; Boron Neutron Capture Therapy; Cell Division; Cell Size; Glioblastoma; Humans; Organelles; Phenylalanine; Radioisotopes; Spectrometry, Mass, Secondary Ion; Sulfhydryl Compounds; Time Factors; Tumor Cells, Cultured | 2002 |
On the optimal energy of epithermal neutron beams for BNCT.
The optimal neutron energy for the treatment of deep-seated tumours using boron neutron capture therapy is studied by analysing various figures of merit. In particular, analysis of the therapeutic gain as a function of the neutron energy indicates that, with the currently available 10B carriers, the most useful neutrons for the treatment of deep-seated tumours, in particular glioblastoma multiforme, are those with an energy of a few keV. Based on the results of the simulations, a method is presented which allows us to evaluate the quality of epithermal neutron beams of known energy spectrum, thus allowing us to compare different neutron-producing reactions and beam-shaping assembly configurations used for accelerator-based neutron sources. Topics: Boron; Boron Neutron Capture Therapy; Brain Neoplasms; Computer Simulation; Glioblastoma; Humans; Monte Carlo Method; Neutrons | 2000 |
Models for estimation of the (10)B concentration after BPA-fructose complex infusion in patients during epithermal neutron irradiation in BNCT.
To create simple and reliable models for clinical practice for estimating the blood (10)B time-concentration curve after p-boronophenylalanine fructose complex (BPA-F) infusion in patients during neutron irradiation in boron neutron capture therapy (BNCT).. BPA-F (290 mg BPA/kg body weight) was infused i.v. during two hours to 10 glioblastoma multiforme patients. Blood samples were collected during and after the infusion. Compartmental models and bi-exponential function fit were constructed based on the (10)B blood time-concentration curve. The constructed models were tested with data from six additional patients who received various amounts of infused BPA-F and data from one patient who received a one-hour infusion of 170 mg BPA/kg body weight.. The resulting open two-compartment model and bi-exponential function estimate the clearance of (10)B after 290 mg BPA/kg body weight infusion from the blood with satisfactory accuracy during the first irradiation field (1 ppm, i.e., 7%). The accuracy of the two models in predicting the clearance of (10)B during the second irradiation field are for two-compartment model 1.0 ppm (8%) and 0.2 ppm (2%) for bi-exponential function. The models predict the average blood (10)B concentration with an increasing accuracy as more data points are available during the treatment.. By combining the two models, a robust and practical modeling tool is created for the estimation of the (10)B concentration in blood after BPA-F infusion. Topics: Boron; Boron Compounds; Boron Neutron Capture Therapy; Brain Neoplasms; Fructose; Glioblastoma; Humans; Isotopes; Models, Biological; Radiation-Sensitizing Agents; Radiobiology | 2000 |
Spectromicroscopy of boron in human glioblastomas following administration of Na2B12H11SH.
Boron neutron capture therapy (BNCT) is an experimental, binary treatment for brain cancer which requires as the first step that tumor tissue is targeted with a boron-10 containing compound. Subsequent exposure to a thermal neutron flux results in destructive, short range nuclear reaction within 10 microm of the boron compound. The success of the therapy requires than the BNCT agents be well localized in tumor, rather than healthy tissue. The MEPHISTO spectromicroscope, which performs microchemical analysis by x-ray absorption near edge structure (XANES) spectroscopy from microscopic areas, has been used to study the distribution of trace quantities of boron in human brain cancer tissues surgically removed from patients first administered with the compound Na2B12H11SH (BSH). The interpretation of XANES spectra is complicated by interference from physiologically present sulfur and phosphorus, which contribute structure in the same energy range as boron. We addressed this problem with the present extensive set of spectra from S, B, and P in relevant compounds. We demonstrate that a linear combination of sulfate, phosphate and BSH XANES can be used to reproduce the spectra acquired on boron-treated human brain tumor tissues. We analyzed human glioblastoma tissue from two patients administered and one not administered with BSH. As well as weak signals attributed to BSH, x-ray absorption spectra acquired from tissue samples detected boron in a reduced chemical state with respect to boron in BSH. This chemical state was characterized by a sharp absorption peak at 188.3 eV. Complementary studies on BSH reference samples were not able to reproduce this chemical state of boron, indicating that it is not an artifact produced during sample preparation or x-ray exposure. These data demonstrate that the chemical state of BSH may be altered by in vivo metabolism. Topics: Borohydrides; Boron; Boron Compounds; Boron Neutron Capture Therapy; Brain Neoplasms; Glioblastoma; Humans; Microtomy; Spectrum Analysis; Sulfhydryl Compounds; Sulfur; X-Rays | 2000 |
Biodistribution of boronophenylalanine in patients with glioblastoma multiforme: boron concentration correlates with tumor cellularity.
Boron-10 (10B) concentrations were measured in 107 surgical samples from 15 patients with glioblastoma multiforme who were infused with 95 atom% 10B-enriched p-boronophenylalanine (BPA) intravenously for 2 h just prior to surgery at doses ranging from 98 to 290 mg BPA/kg body weight. The blood 10B concentration reached a maximum at the end of the infusion (ranging from 9.3 to 26.0 microg 10B/g) and was proportional to the amount of BPA infused. The boron concentrations in excised tumor samples ranged from 2.7 to 41.3 microg 10B/g over the range of administered BPA doses and varied considerably among multiple samples from individual patients and among patients at the same BPA dose. A morphometric index of the density of viable-appearing tumor cells in histological sections obtained from samples adjacent to, and macroscopically similar to, the tumor samples used for boron analysis correlated linearly with the boron concentrations. From that correlation it is estimated that 10B concentrations in glioblastoma tumor cells were over four times greater than concurrent blood 10B concentrations. Thus, in the dose range of 98 to 290 mg BPA/kg, the accumulation of boron in tumor cells is a linear function of BPA dose and the variations observed in boron concentrations of tumor specimens obtained surgically are largely due to differences in the proportion of nontumor tissue (i.e. necrotic tissue, normal brain) present in the samples submitted for boron analysis. The tumor:blood 10B concentration ratio derived from this analysis provides a rationale for estimating the fraction of the radiation dose to viable tumor cells resulting from the boron neutron capture reaction based on measured boron concentrations in the blood at the time of BNCT without the need for analysis of tumor samples from individual patients. Topics: Boron; Boron Compounds; Boron Neutron Capture Therapy; Glioblastoma; Humans; Phenylalanine; Tissue Distribution | 1998 |
Hyperthermia enhances thermal-neutron-induced cell death of human glioblastoma cell lines at low concentrations of 10B.
To examine the ability of pre- vs. post-irradiation hyperthermia to enhance the effectiveness of thermal neutrons to kill human glioblastoma cells.. Human glioblastoma cell lines, T98G, A7, A172, and U 87MG, were exposed to thermal neutrons from the Kyoto University Research (KUR) reactor or to 60Co gamma-rays. Hyperthermia was tested before and after irradiation of T98G (44 degrees C, 15 min) and A7 cells (44 degrees C, 40 min), and with different concentrations (0-30 ppm) of 10B-boric acid. The biological end point of all experiments was cell survival measured by a colony formation assay.. The relative biological effectiveness (RBE) values of thermal neutrons for these cell lines compared with 60Co gamma-rays were 1.8-2.0 at their D(0) values. When T98G and A7 cells were heated after thermal neutron irradiation, there was a synergistic effect at low 10B concentrations (up to 5 ppm for T98G and up to 10 ppm for A7 cells). With high concentrations of boron (10-30 ppm for T98G and 20-30 ppm for A7 cells), hyperthermia and neutron irradiation interact additively rather than synergistically. There was no enhancement when cells were heated before thermal neutron irradiation. These results suggest that the radiosensitizing effect of hyperthermia may be attributed to partial inhibition of the repair of the potentially lethal damage caused by neutron irradiation. Topics: Boron; Boron Neutron Capture Therapy; Brain Neoplasms; Cell Death; Cobalt Radioisotopes; Combined Modality Therapy; Glioblastoma; Humans; Hyperthermia, Induced; Isotopes; Tumor Cells, Cultured; Tumor Stem Cell Assay | 1998 |
Boron neutron capture therapy for glioblastoma: improvement of boron biodistribution by hyaluronidase.
Boron neutron capture therapy (BNCT) represents a highly promising therapeutic alternative for the treatment of the most common malignant brain tumor, glioblastoma multiforme. Both the efficacy and safety of BNCT are greatly dependent on the pattern of 10B biodistribution. The present study investigates the influence of systemic hyaluronidase applied in combination with Na2B12H11SH (BSH), a boron carrier used in current clinical trials. The application of hyaluronidase was associated with a statistically significant improvement in the tumor/blood boron concentration ratio which suggests that hyaluronidase is capable of enhancing the therapeutic potential of BSH. Topics: Boron; Chemotherapy, Adjuvant; Clinical Trials as Topic; Glioblastoma; Humans; Hyaluronoglucosaminidase; Neutron Capture Therapy; Tissue Distribution | 1998 |
Imaging of boron in tissue at the cellular level for boron neutron capture therapy.
Glioblastoma multiforme, and other tumors involving the brain, are undergoing experimental treatment with a promising new technique: boron neutron capture therapy (BNCT). BNCT relies on the capture of thermal neutrons by boron deposited biochemically in the tumor and the subsequent fission of the boron into energetic lithium ions and alpha particles. An important requirement for improved BNCT is the development of more selective boron delivery mechanisms. The ability to image the boron concentration in tissue sections and even inside individual cells would be an important aid in the development of these delivery mechanisms. We have compared both sputter-initiated resonance ionization microprobe (SIRIMP), which combines resonance ionization with a high-energy pulsed focused sputter ion beam and mass spectrometric detection of ions, with laser atomization resonance ionization microprobe (LARIMP), which uses a laser pulse instead of an ion pulse for the atomization process, to determine their characteristics in locating and quantifying boron concentrations as a function of position in tissues obtained from a rat which had been infused with a BNCT drug. The data show that the SIRIMP/LARIMP techniques are well suited for quantitative and ultrasensitive imaging of boron trace element concentrations in biological tissue sections. The LARIMP mode could be used to quickly determine the spatial boron concentration with intercellular resolution over large areas down to the low nanograms-per-gram level, while the SIRIMP mode could be used to determine the spatial boron concentration and its variability in intracellular areas. Topics: Animals; Boron; Brain; Brain Neoplasms; Glioblastoma; Kidney; Liver; Mass Spectrometry; Neutron Capture Therapy; Rats | 1997 |
Ion microscopy imaging of 10B from p-boronophenylalanine in a brain tumor model for boron neutron capture therapy.
Boron neutron capture therapy (BNCT), a binary treatment modality that can potentially irradiate tumor tissue within cellular dimensions, is critically dependent on the preferential delivery of 10B to individual neoplastic cells. In this study, ion microscopy was used to quantitatively evaluate the selectivity of p-boronophenylalanine-fructose (BPA-F) in the rat 9L gliosarcoma brain tumor model. With a spatial resolution of approximately 0.5 microm, ion microscopy images show that BPA-F delivers 3.5 times more boron to the main tumor mass [99 +/- 36 microg/g tissue (mean +/- SD)] than to the contiguous normal brain (27 +/- 12 microg/g tissue). A similar, but lower, accumulation was observed away from the main tumor mass in small clusters of neoplastic cells (47 +/- 15 microg/g tissue) invading the surrounding brain (16 +/- 8 microg/g tissue). These findings establish for the first time the selectivity of BPA-F to the neoplastic cells invading the normal brain and provide a much-needed baseline measurement of the distribution of a clinically approved BNCT drug. Given the propensity for malignant brain tumors to infiltrate the surrounding normal brain, these observations have particular significance for clinical trials of BNCT for human glioblastoma multiforme using the drug BPA-F. Topics: Animals; Boron; Boron Neutron Capture Therapy; Brain Chemistry; Brain Neoplasms; Disease Models, Animal; Glioblastoma; Gliosarcoma; Humans; Male; Neoplasm Invasiveness; Neoplasm Transplantation; Rats; Rats, Inbred F344; Spectrometry, Mass, Secondary Ion | 1996 |
BSH distributions in the canine head and a human patient using 11B MRI.
A 3D projection reconstruction (3DPR) method was used to obtain in vivo 11B images in a large canine brain tumor model and in a human infused with borocaptate sodium (BSH). Studies were performed in dogs with and without gliosarcomas implanted and grown to a size of 2-3 cm. The 3DPR method demonstrates a signal-to-noise ratio (SNR) that allows qualitative kinetic studies of the boron compound in normal and tumor tissue of the head. The measurements indicate initial uptake of the BSH compound in tumor to be less than that in muscle with no uptake in normal brain tissue. Moreover, uptake of BSH in tissue was found to lag the boron concentration in blood with delays that depend on tissue type. In addition, the first human boron images were obtained on a patient who underwent surgical resection and volumetric debulking of a large (7 cm) glioblastoma multiforme. BSH was readily taken up in residual tumor tissue, while diffusion into the resection volume was slower. Topics: Animals; Borohydrides; Boron; Boron Neutron Capture Therapy; Brain; Brain Neoplasms; Dogs; Glioblastoma; Gliosarcoma; Humans; Image Processing, Computer-Assisted; Isotopes; Magnetic Resonance Imaging; Neoplasm Transplantation; Sulfhydryl Compounds | 1995 |
Subcellular boron-10 localization in glioblastoma for boron neutron capture therapy with Na2B12H11SH.
Because of the short range of the highly energetic particles helium-4 and lithium-7 that results from neutron-induced disintegration of boron-10, the efficacy of Boron Neutron Capture Therapy (BNCT) is heavily dependent on 10B-microlocation. Despite the crucial importance of boron-10, there is little specific information with regard to the agent currently used for inducing BNCT, namely Na2B12H11SH. In the present study, a subcellular 10B-location was investigated in tumor tissue obtained from seven patients with glioblastoma World Health Organization Grade IV. These patients received Na2B12H11SH at doses used in therapeutic trials (75 mg/kg body weight in five patients, and 150 mg/kg body weight in two patients, respectively). In three cases, boron-10 was identified in glioblastoma cells by laser microprobe mass analysis. In these tumors, boron-10 was found only in the nuclei of neoplastic cells but not in other cell compartments. These preliminary results suggest a predominant association of Na2B12H11SH with the nuclei of malignant glioma cells and thus support the value of Na2B12H11SH as a suitable boron carrier for BNCT. Topics: Borohydrides; Boron; Boron Neutron Capture Therapy; Brain Neoplasms; Cell Nucleus; Glioblastoma; Humans; Isotopes; Lasers; Mass Spectrometry; Microscopy, Electron; Signal Processing, Computer-Assisted; Subcellular Fractions; Sulfhydryl Compounds | 1994 |
The potential of neutron capture therapy in the management of uncontrollable localised tumours.
The role of Neutron Capture Therapy for the treatment of uncontrollable, localised tumours is examined. Several boron carrier biochemicals are already in use for the selective accumulation of boron in cancer cells, and therapeutic boron concentrations have been achieved in glioblastoma and melanoma in animal models and in patients. Local control of glioblastoma and subcutaneous melanoma has been reported after thermal neutron irradiation. Different neutron beam requirements apply for the treatment of these cancers, in the former case a thermal beam is adequate but a more penetrating epithermal beam is needed for the treatment of deep-seated tumours. A thermal facility for small animal irradiations is available in Australia, and the development of a patient thermal/epithermal facility is under active consideration. Topics: Boron; Boron Compounds; Brain Neoplasms; Glioblastoma; Humans; Isotopes; Melanoma; Neutrons; Skin Neoplasms | 1990 |
Boron neutron capture therapy for cancer.
Topics: Alpha Particles; Animals; Antibodies, Monoclonal; Boron; Boron Compounds; Brain Neoplasms; Glioblastoma; Humans; Immunotoxins; Isotopes; Melanoma; Mice; Neoplasms; Neutrons; Phenylalanine; Radiation Dosage | 1990 |
An equivalent thermal neutron fluence detector for boron neutron capture therapy.
Topics: Boron; Brain Neoplasms; Glioblastoma; Humans; Isotopes; Neutrons; Radiometry; Radiotherapy, High-Energy | 1989 |
A revised boron-neutron capture therapy for malignant brain tumors. II. Interim clinical result with the patients excluding previous treatments.
Fifteen brain tumor patients were treated with slow neutron. It proved to extend life span of terminal glioblastoma patients irresponsive to Co-60, to 2 years, but quality of survival is poor due to complications of previous treatments. Two glioblastoma patients excluding other treatments, the only genuine Boron-neutron capture therapy cases, have been living for 39+ and 34+ months working full-scale without neurological deficit. Topics: Adult; Aged; Autoradiography; Boron; Brain Neoplasms; Child; Cobalt Radioisotopes; Ependymoma; Female; Glioblastoma; Humans; Male; Medulloblastoma; Meningioma; Middle Aged; Neutrons; Radioisotope Teletherapy; Radiotherapy Dosage | 1975 |
Boron neutron capture therapy of cerebral gliomas. II. Utilization of the blood-brain barrier and tumor-specific antigens for the selective concentration of boron in gliomas.
The use of the blood-brain barrier and of tumor-specific antibodies to concentrate boron selectivity in gliomas for neutron capture therapy is considered experimentally and theoretically. The time-dependent concentration of two anionic boranes, B12 H11 SH2- and B12 H11 SOSB12 H114-, in the blood, brain, and tumor of rats bearing a tumor of gliomatous origin is reported. The rate of clearance of each anionic borane from the blood is correlated with the fraction of non-protein bound anion in the plasma. The use of antibodies to carry therapeutical useful amounts of boron to tumor-specific or tumor-associated antigens on the tumor cell surface will require different numbers of boron atoms bound per antibody depending on several immunological and physical parameters. Calculations using published values of antibody-antigen association constants and of cell surface antigen densities predict that in order to obtain 10mug 10B/g tumor from 10 to over 10,000 boron-10 atoms will have to be bound per tumor antigenic site. Topics: Animals; Antibodies, Neoplasm; Antigens, Neoplasm; Binding Sites, Antibody; Blood-Brain Barrier; Boranes; Boron; Brain Neoplasms; Disease Models, Animal; Glioblastoma; Isotopes; Male; Neoplasms, Experimental; Radiotherapy Dosage; Rats | 1975 |
[Boron-10-slow neutron capture therapy for brain tumors (author's transl)].
Topics: Animals; Autoradiography; Boron; Brain; Brain Neoplasms; Cats; Cobalt Radioisotopes; Fees, Medical; Forecasting; Glioblastoma; Humans; Isotopes; Male; Medulloblastoma; Middle Aged; Neutrons; Nuclear Physics; Prognosis; Radiation Injuries; Radiotherapy; Rats; Time Factors | 1974 |
A revised boron-neutron capture therapy for malignant brain tumours. I. Experience on terminally ill patients after Co-60 radiotherapy.
Topics: Adult; Alpha Particles; Animals; Astrocytoma; Autoradiography; Boron; Brain Neoplasms; Cats; Child; Cobalt Radioisotopes; Female; Frontal Lobe; Glioblastoma; Glioma; Humans; Male; Methods; Mice; Mice, Inbred C3H; Mice, Inbred C57BL; Middle Aged; Neutrons; Pons | 1973 |
Neuropathologic study of fourteen cases of malignant brain tumor treated by boron-10 slow neutron capture radiation.
Topics: Adolescent; Adult; Astrocytoma; Boron; Brain Neoplasms; Female; Frontal Lobe; Glioblastoma; Humans; Male; Melanoma; Middle Aged; Neutrons; Occipital Lobe; Parietal Lobe; Radiation Injuries; Radioisotopes; Radiotherapy Dosage; Spinal Cord; Temporal Lobe | 1972 |
The experimental application of neutron capture therapy to glioblastoma multiforme.
Topics: Boron; Glioblastoma; Humans; Neutron Capture Therapy; Radioactivity; Radioisotopes | 1955 |
Neutron capture therapy with boron in the treatment of glioblastoma multiforme.
Topics: Boron; Glioblastoma; Humans; Neutron Capture Therapy; Radioactivity; Radioisotopes | 1954 |
Neutron capture therapy of gliomas using boron.
Topics: Boron; Brain; Brain Neoplasms; Glioblastoma; Glioma; Humans; Neutron Capture Therapy; Neutrons | 1954 |