boron and Alzheimer-Disease

boron has been researched along with Alzheimer-Disease* in 4 studies

Other Studies

4 other study(ies) available for boron and Alzheimer-Disease

ArticleYear
Investigation Covering the Effect of Boron plus Taurine Application on Protein Carbonyl and Advanced Oxidation Protein Products Levels in Experimental Alzheimer Model.
    Biological trace element research, 2023, Volume: 201, Issue:4

    Alzheimer's disease (AD) is the most common form of dementia that occurs in the brain. This is a chronic neurodegenerative disease which is valid in 60-70% of all dementia patients. Boron, regarded as a potential antioxidant, has the effect of reducing oxidative stress. Taurine, as one of the thiol-containing amino acids, exists at different concentrations in both the neurons and glial cells of the central nervous system. It plays an important role in the protective and adjuvant therapies as an antioxidant due to its characteristics of maintaining the oxidant-antioxidant balance of the body as well as cell integrity and increasing body resistance. Based on this information, our objective was to reveal the effect of boron alone, taurine alone plus co-administration of taurine and boron application on brain tissue protein carbonyls (PC) and serum advanced oxidation protein products (AOPP) levels in the experimental Alzheimer's model. For this purpose, 5 groups were formed in our study which consisted of 30 Wistar albino male rats. The rats were given a single dose of STZ stereotaxically. At the end of this period, the rats were decapitated, plus their brain tissues and blood were removed. Our findings suggested that taurine alone and co-administration of boron and taurine had a decreasing effect on AOPP and PC levels of the experimental Alzheimer model of the rats.

    Topics: Advanced Oxidation Protein Products; Alzheimer Disease; Animals; Antioxidants; Boron; Neurodegenerative Diseases; Oxidative Stress; Protein Carbonylation; Rats; Rats, Wistar; Taurine

2023
Highly Efficient Singlet Oxygen Generation by BODIPY-Ruthenium(II) Complexes for Promoting Neurite Outgrowth and Suppressing Tau Protein Aggregation.
    Inorganic chemistry, 2023, Jan-23, Volume: 62, Issue:3

    Singlet oxygen (

    Topics: Alzheimer Disease; Boron; Humans; Neuronal Outgrowth; Photosensitizing Agents; Protein Aggregates; Ruthenium; Singlet Oxygen; tau Proteins

2023
Boron Nitride Nanoparticles Loaded with a Boron-Based Hybrid as a Promising Drug Carrier System for Alzheimer's Disease Treatment.
    International journal of molecular sciences, 2022, Jul-26, Volume: 23, Issue:15

    The search for an innovative and effective drug delivery system that can carry and release targeted drugs with enhanced activity to treat Alzheimer's disease has received much attention in the last decade. In this study, we first designed a boron-based drug delivery system for effective treatment of AD by integrating the folic acid (FA) functional group into hexagonal boron nitride (hBN) nanoparticles (NPs) through an esterification reaction. The hBN-FA drug carrier system was assembled with a new drug candidate and a novel boron-based hybrid containing an antioxidant as BLA, to constitute a self-assembled AD nano transport system. We performed molecular characterization analyses by using UV-vis spectroscopy, Fourier transform infrared spectrophotometer (FTIR), scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS) and Zeta potential investigations. Second, we tested the anti-Alzheimer properties of the carrier system on a differentiated neuroblastoma (SHSY5-Y) cell line, which was exposed to beta-amyloid (1-42) peptides to stimulate an experimental in vitro AD model. Next, we performed cytotoxicity analyses of synthesized molecules on the human dermal fibroblast cell line (HDFa) and the experimental AD model. Cytotoxicity analyses showed that even higher concentrations of the carrier system did not enhance the toxicological outcome in HDFa cells. Drug loading analyses reported that uncoated hBN nano conjugate could not load the BLA, whereas the memantine loading capacity of hBN was 84.3%. On the other hand, memantine and the BLA loading capacity of the hBN-FA construct was found to be 95% and 97.5%, respectively. Finally, we investigated the neuroprotective properties of the nano carrier systems in the experimental AD model. According to the results, 25 µg/mL concentrations of hBN-FA+memantine (94% cell viability) and hBN-FA+BLA (99% cell viability) showed ameliorative properties against beta-amyloid (1-42) peptide toxicity (50% cell viability). These results were generated through the use of flow cytometry, acetylcholinesterase (AChE) and antioxidant assays. In conclusion, the developed drug carrier system for AD treatment showed promising potential for further investigations and enlightened neuroprotective capabilities of boron molecules to treat AD and other neurodegenerative diseases. On the other hand, enzyme activity, systematic toxicity analyses, and animal studies should be performed to understand neuroprotective propertie

    Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Antioxidants; Boron; Boron Compounds; Drug Carriers; Folic Acid; Humans; Memantine; Nanoparticles

2022
A Boron-Containing Compound Acting on Multiple Targets Against Alzheimer's Disease. Insights from Ab Initio and Molecular Dynamics Simulations.
    Journal of chemical information and modeling, 2021, 07-26, Volume: 61, Issue:7

    Given the multifactorial nature and pathogenesis of Alzheimer's disease, therapeutic strategies are addressed to combine the benefits of every single-target drug into a sole molecule. Quantum mechanics and molecular dynamics (MD) methods were employed here to investigate the multitarget action of a boron-containing compound against Alzheimer's disease. The antioxidant activity as a radical scavenger and metal chelator was explored by means of density functional theory. The most plausible radical scavenger mechanisms, which are hydrogen transfer, radical adduct formation, and single-electron transfer in aqueous and lipid environments, were fully examined. Metal chelation ability was investigated by considering the complexation of Cu(II) ion, one of the metals that in excess can even catalyze the β-amyloid (Aβ) aggregation. The most probable complexes in the physiological environment were identified by considering both the stabilization energy and the shift of the λ

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Boron; Boron Compounds; Chelating Agents; Humans; Molecular Dynamics Simulation

2021