bms-986094 and Hepatitis-C

bms-986094 has been researched along with Hepatitis-C* in 4 studies

Other Studies

4 other study(ies) available for bms-986094 and Hepatitis-C

ArticleYear
Synthesis and Anti-HCV Activities of 4'-Fluoro-2'-Substituted Uridine Triphosphates and Nucleotide Prodrugs: Discovery of 4'-Fluoro-2'- C-methyluridine 5'-Phosphoramidate Prodrug (AL-335) for the Treatment of Hepatitis C Infection.
    Journal of medicinal chemistry, 2019, 05-09, Volume: 62, Issue:9

    We report the synthesis and biological evaluation of a series of 4'-fluoro-2'- C-substituted uridines. Triphosphates of the uridine analogues exhibited a potent inhibition of hepatitis C virus (HCV) NS5B polymerase with IC

    Topics: Alanine; Animals; Antiviral Agents; Cell Line, Tumor; Dogs; Hepacivirus; Hepatitis C; Humans; Nucleic Acid Synthesis Inhibitors; Phosphoramides; Prodrugs; Replicon; Uracil Nucleotides; Uridine; Viral Nonstructural Proteins

2019
Biochemical Characterization of the Active Anti-Hepatitis C Virus Metabolites of 2,6-Diaminopurine Ribonucleoside Prodrug Compared to Sofosbuvir and BMS-986094.
    Antimicrobial agents and chemotherapy, 2016, Volume: 60, Issue:8

    Ribonucleoside analog inhibitors (rNAI) target the hepatitis C virus (HCV) RNA-dependent RNA polymerase nonstructural protein 5B (NS5B) and cause RNA chain termination. Here, we expand our studies on β-d-2'-C-methyl-2,6-diaminopurine-ribonucleotide (DAPN) phosphoramidate prodrug 1 (PD1) as a novel investigational inhibitor of HCV. DAPN-PD1 is metabolized intracellularly into two distinct bioactive nucleoside triphosphate (TP) analogs. The first metabolite, 2'-C-methyl-GTP, is a well-characterized inhibitor of NS5B polymerase, whereas the second metabolite, 2'-C-methyl-DAPN-TP, behaves as an adenosine base analog. In vitro assays suggest that both metabolites are inhibitors of NS5B-mediated RNA polymerization. Additional factors, such as rNAI-TP incorporation efficiencies, intracellular rNAI-TP levels, and competition with natural ribonucleotides, were examined in order to further characterize the potential role of each nucleotide metabolite in vivo Finally, we found that although both 2'-C-methyl-GTP and 2'-C-methyl-DAPN-TP were weak substrates for human mitochondrial RNA (mtRNA) polymerase (POLRMT) in vitro, DAPN-PD1 did not cause off-target inhibition of mtRNA transcription in Huh-7 cells. In contrast, administration of BMS-986094, which also generates 2'-C-methyl-GTP and previously has been associated with toxicity in humans, caused detectable inhibition of mtRNA transcription. Metabolism of BMS-986094 in Huh-7 cells leads to 87-fold higher levels of intracellular 2'-C-methyl-GTP than DAPN-PD1. Collectively, our data characterize DAPN-PD1 as a novel and potent antiviral agent that combines the delivery of two active metabolites.

    Topics: Adenosine; Antiviral Agents; Cell Line; DNA-Directed RNA Polymerases; Guanosine Monophosphate; Hepacivirus; Hepatitis C; Humans; Prodrugs; Ribonucleosides; RNA; RNA, Mitochondrial; RNA, Viral; Sofosbuvir; Transcription, Genetic; Viral Nonstructural Proteins; Virus Replication

2016
β-D-2'-C-Methyl-2,6-diaminopurine Ribonucleoside Phosphoramidates are Potent and Selective Inhibitors of Hepatitis C Virus (HCV) and Are Bioconverted Intracellularly to Bioactive 2,6-Diaminopurine and Guanosine 5'-Triphosphate Forms.
    Journal of medicinal chemistry, 2015, Apr-23, Volume: 58, Issue:8

    The conversion of selected β-D-2,6-diaminopurine nucleosides (DAPNs) to their phosphoramidate prodrug (PD) substantially blocks the conversion to the G-analog allowing for the generation of two bioactive nucleoside triphosphates (NTPs) in human hepatocytes. A variety of 2'-C-methyl DAPN-PDs were prepared and evaluated for inhibition of HCV viral replication in Huh-7 cells, cytotoxicity in various cell lines, and cellular pharmacology in both Huh-7 and primary human liver cells. The DAPN-PDs were pan-genotypic, effective against various HCV resistant mutants, and resistant variants could not be selected. 2'-C-Me-DAPN-TP and 2'-C-Me-GTP were chain terminators for genotype 1b HCV-pol, and single nucleotide incorporation assays revealed that 2'-C-Me-DAPN-TP was incorporated opposite U. No cytotoxicity was observed with our DAPN-PD when tested up to 50 μM. A novel, DAPN-PD, 15c, has been selected for further evaluation because of its good virologic and toxicologic profile and its ability to deliver two active metabolites, potentially simplifying HCV treatment.

    Topics: 2-Aminopurine; Amides; Antiviral Agents; Cell Line; Cells, Cultured; Guanosine Triphosphate; Hepacivirus; Hepatitis C; Humans; Methylation; Phosphoric Acids; Prodrugs; Ribonucleosides

2015
Dual pro-drugs of 2'-C-methyl guanosine monophosphate as potent and selective inhibitors of hepatitis C virus.
    Bioorganic & medicinal chemistry letters, 2011, Oct-01, Volume: 21, Issue:19

    We have previously reported the power of combining a 5'-phosphoramidate ProTide, phosphate pro-drug, motif with a 6-methoxy purine pro-drug entity to generate highly potent anti-HCV agents, leading to agents in clinical trial. We herein extend this work with the disclosure that a variety of alternative 6-substituents are tolerated. Several compounds exceed the potency of the prior 6-methoxy leads, and in almost every case the ProTide is several orders of magnitude more potent than the parent nucleoside. We also demonstrate that these agents act as pro-drugs of 2'-C-methyl guanosine monophosphate. We have also reported the novel use of hepatocyte cell lysate as an ex vivo model for ProTide metabolism.

    Topics: Amides; AMP Deaminase; Antiviral Agents; Cell Line, Tumor; Drug Design; Drug Evaluation, Preclinical; Guanosine Monophosphate; Hepacivirus; Hepatitis C; Humans; Hydrolysis; Inhibitory Concentration 50; Microbial Sensitivity Tests; Molecular Structure; Nucleosides; Phosphoric Acids; Phosphorylation; Prodrugs; Stereoisomerism; Structure-Activity Relationship; Virus Replication

2011