bms-754807 and Squamous-Cell-Carcinoma-of-Head-and-Neck

bms-754807 has been researched along with Squamous-Cell-Carcinoma-of-Head-and-Neck* in 2 studies

Other Studies

2 other study(ies) available for bms-754807 and Squamous-Cell-Carcinoma-of-Head-and-Neck

ArticleYear
IGF1R and Src inhibition induce synergistic cytotoxicity in HNSCC through inhibition of FAK.
    Scientific reports, 2021, 05-24, Volume: 11, Issue:1

    Head and neck cancer is the sixth most common cancer worldwide with a 5-year survival of only 65%. Targeting compensatory signaling pathways may improve therapeutic responses and combat resistance. Utilizing reverse phase protein arrays (RPPA) to assess the proteome and explore mechanisms of synergistic growth inhibition in HNSCC cell lines treated with IGF1R and Src inhibitors, BMS754807 and dasatinib, respectively, we identified focal adhesion signaling as a critical node. Focal Adhesion Kinase (FAK) and Paxillin phosphorylation were decreased as early as 15 min after treatment, and treatment with a FAK inhibitor, PF-562,271, was sufficient to decrease viability in vitro. Treatment of 3D spheroids demonstrated robust cytotoxicity suggesting that the combination of BMS754807 and dasatinib is effective in multiple experimental models. Furthermore, treatment with BMS754807 and dasatinib significantly decreased cell motility, migration, and invasion in multiple HNSCC cell lines. Most strikingly, treatment with BMS754807 and dasatinib, or a FAK inhibitor alone, significantly increased cleaved-PARP in human ex-vivo HNSCC patient tissues demonstrating a potential clinical utility for targeting FAK or the combined targeting of the IGF1R with Src. This ex-vivo result further confirms FAK as a vital signaling node of this combinatorial treatment and demonstrates therapeutic potential for targeting FAK in HNSCC patients.

    Topics: Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Dasatinib; Drug Synergism; Focal Adhesion Kinase 1; Gene Expression Regulation, Neoplastic; Head and Neck Neoplasms; Humans; Indoles; Paxillin; Phosphorylation; Protein Array Analysis; Pyrazoles; Signal Transduction; Squamous Cell Carcinoma of Head and Neck; Sulfonamides; Triazines

2021
Antitumor effect of insulin-like growth factor-1 receptor inhibition in head and neck squamous cell carcinoma.
    The Laryngoscope, 2020, Volume: 130, Issue:6

    The insulin-like growth factor-1 receptor (IGF1R) has been implicated in therapeutic resistance in head and neck squamous cell carcinoma (HNSCC), and small molecule tyrosine kinase inhibitors (TKIs) of IGF1R activity may have anticancer activity. Therefore, the relationship between survival and IGF1R expression was assessed for oral cavity (OC) cancer, and the antitumor effects of two IGF1R-TKIs, OSI-906 and BMS-754807, were evaluated in HNSCC cell lines in vitro.. Clinical outcome data and tissue microarray immunohistochemistry were used to generate IGF1R expression-specific survival curves. Immunoblot, alamarBlue proliferation assay, trypan blue exclusion viability test, clonogenic assay, flow cytometry, and reverse phase protein array (RPPA) were used to evaluate in vitro responses to IGF1R-TKIs.. For patients with stage III/IV OCSCC, higher IGF1R expression was associated with poorer overall 5-year survival (P = 0.029). Both BMS-754807 and OSI-906 caused dose-dependent inhibition of IGF1R and Akt phosphorylation and inhibited proliferation; BMS-754807 was more potent than OSI-906. Both drugs reduced HNSCC cell viability; only OSI-906 was able to eliminate all viable cells at 10 μM. The two drugs similarly inhibited clonogenic cell survival. At 1 μM, only BMS-754807 caused a fourfold increase in the basal apoptotic rate. RPPA demonstrated broad effects of both drugs on canonical IGF1R signaling pathways and also inhibition of human epidermal growth factor receptor-3 (HER3), Src, paxillin, and ezrin phosphorylation.. OSI-906 and BMS-754807 inhibit IGF1R activity in HNSCC cell lines with reduction in prosurvival and proliferative signaling and with concomitant antiproliferative and proapoptotic effects. Such antagonists may have utility as adjuvants to existing therapies for HNSCC.. NA Laryngoscope, 130:1470-1478, 2020.

    Topics: Head and Neck Neoplasms; Humans; Imidazoles; Insulin-Like Growth Factor I; Mouth Neoplasms; Neoplasm Staging; Pyrazines; Pyrazoles; Squamous Cell Carcinoma of Head and Neck; Treatment Outcome; Triazines; Tumor Cells, Cultured

2020