bms-470539 has been researched along with Inflammation* in 4 studies
4 other study(ies) available for bms-470539 and Inflammation
Article | Year |
---|---|
Activation of MC1R with BMS-470539 attenuates neuroinflammation via cAMP/PKA/Nurr1 pathway after neonatal hypoxic-ischemic brain injury in rats.
Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of hypoxic-ischemic (HI)-induced brain injury. Activation of melanocortin-1 receptor (MC1R) has been shown to exert anti-inflammatory and neuroprotective effects in several neurological diseases. In the present study, we have explored the role of MC1R activation on neuroinflammation and the potential underlying mechanisms after neonatal hypoxic-ischemic brain injury in rats.. A total of 169 post-natal day 10 unsexed rat pups were used. HI was induced by right common carotid artery ligation followed by 2.5 h of hypoxia. BMS-470539, a specific selective MC1R agonist, was administered intranasally at 1 h after HI induction. To elucidate the potential underlying mechanism, MC1R CRISPR KO plasmid or Nurr1 CRISPR KO plasmid was administered via intracerebroventricular injection at 48 h before HI induction. Percent brain infarct area, short- and long-term neurobehavioral tests, Nissl staining, immunofluorescence staining, and Western blot were conducted.. The expression levels of MC1R and Nurr1 increased over time post-HI. MC1R and Nurr1 were expressed on microglia at 48 h post-HI. Activation of MC1R with BMS-470539 significantly reduced the percent infarct area, brain atrophy, and inflammation, and improved short- and long-term neurological deficits at 48 h and 28 days post-HI. MC1R activation increased the expression of CD206 (a microglial M2 marker) and reduced the expression of MPO. Moreover, activation of MC1R with BMS-470539 significantly increased the expression levels of MC1R, cAMP, p-PKA, and Nurr1, while downregulating the expression of pro-inflammatory cytokines (TNFα, IL-6, and IL-1β) at 48 h post-HI. However, knockout of MC1R or Nurr1 by specific CRISPR reversed the neuroprotective effects of MC1R activation post-HI.. Our study demonstrated that activation of MC1R with BMS-470539 attenuated neuroinflammation, and improved neurological deficits after neonatal hypoxic-ischemic brain injury in rats. Such anti-inflammatory and neuroprotective effects were mediated, at least in part, via the cAMP/PKA/Nurr1 signaling pathway. Therefore, MC1R activation might be a promising therapeutic target for infants with hypoxic-ischemic encephalopathy (HIE). Topics: Animals; Animals, Newborn; Brain; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Hypoxia-Ischemia, Brain; Imidazoles; Inflammation; Microglia; Nuclear Receptor Subfamily 4, Group A, Member 2; Rats; Rats, Sprague-Dawley; Receptor, Melanocortin, Type 1; Signal Transduction | 2021 |
Selected melanocortin 1 receptor single-nucleotide polymorphisms differentially alter multiple signaling pathways.
The melanocortin 1 receptor (MC1R) is a highly polymorphic G protein-coupled receptor, which is known to modulate pigmentation and inflammation. In the current study, we investigated the pharmacological effects of select single-nucleotide polymorphisms (SNPs) (V60L, R163Q, and F196L). After transient expression of MC1Rs in human embryonic kidney 293 cells, basal and ligand-induced cAMP signaling and mitogen-activated protein kinase (MAPK) activation were assessed by using luciferase reporter gene assays and Western blot analysis, respectively. All receptor variants showed decreased basal cAMP activity. With the V60L and F196L variants, the decrease in constitutive activity was attributable, at least in part, to a reduction in surface expression. The F196L variant also displayed a significant reduction in potency for both the peptide agonist α-melanocyte-stimulating hormone (α-MSH) and the small-molecule agonist 1-[1-(3-methyl-L-histidyl-O-methyl-D-tyrosyl)-4-phenyl-4-piperidinyl]-1-butanone (BMS-470539). In MAPK signaling assays, the F196L variant showed decreased phospho-extracellular signal-regulated kinase levels after stimulation with either α-MSH or BMS-470539. In contrast, the R163Q variant displayed a selective loss of α-MSH-induced MAPK activation; whereas responsiveness to the small-molecule agonist BMS-470539 was preserved. Further assessment of MC1R variants in A549 cells, an in vitro model of inflammation, revealed an enhanced inflammatory response resulting from expression of the F196L variant (versus the wild-type MC1R). This alteration in function was restored by treatment with BMS-470539. Overall, these studies illustrate novel signaling profiles linked to distinct MC1R SNPs. Furthermore, our investigations highlight the potential for small-molecule drugs to rescue the function of MC1R variants that show reduced basal and/or α-MSH stimulated activity. Topics: alpha-MSH; Cell Line, Transformed; Cyclic AMP; HEK293 Cells; Humans; Imidazoles; Inflammation; Mitogen-Activated Protein Kinases; NF-kappa B; Polymorphism, Single Nucleotide; Receptor, Melanocortin, Type 1; Signal Transduction | 2012 |
A selective small molecule agonist of the melanocortin-1 receptor inhibits lipopolysaccharide-induced cytokine accumulation and leukocyte infiltration in mice.
It is well established that melanocortins are peptides that have potent anti-inflammatory activity. Recent research has focused on understanding which of the known melanocortin receptors mediates the anti-inflammatory actions of the melanocortins. The aim of this study was to assess the anti-inflammatory activity of a synthetic MC-1R agonist. BMS-470539 is a potent, selective, full agonist of human and murine MC-1R with EC(50) values in a cAMP accumulation assay of 16.8 and 11.6 nM, respectively. BMS-470539 dose-dependently inhibited TNF-alpha-induced activation of a NF-kappaB transcriptional reporter in human melanoma cells, which endogenously express MC-1R. In vivo studies with BMS-470539 demonstrated that subcutaneous administration of BMS-470539 resulted in a dose-dependent inhibition of LPS-induced TNF-alpha production in BALB/c mice. In this model, the compound had an ED(50) of approximately 10 micromol/kg and a pharmacodynamic half-life of approximately 8 h. Pharmacokinetic analysis of the compound indicated that the compound had a t(1/2) of 1.7 h. In a model of lung inflammation, administration of 15 micromol/kg BMS-470539 resulted in a 45% reduction in LPS-induced leukocyte infiltration (an infiltrate comprised primarily of neutrophils). The compound was also effective in a model of delayed-type hypersensitivity, reducing paw swelling by 59%, comparable with that seen with 5 mg/kg dexamethasone. These studies demonstrate that a selective small molecule agonist of the melanocortin-1 receptor is a potent anti-inflammatory agent in vivo and provides compelling evidence for the involvement of this receptor in the modulation of inflammation. Topics: Animals; Cell Line; Cell Movement; Cytokines; Dose-Response Relationship, Drug; Female; Humans; Imidazoles; Inflammation; Leukocytes; Lipopolysaccharides; Lung; Male; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Molecular Weight; Receptor, Melanocortin, Type 1; Structure-Activity Relationship; Time Factors | 2006 |
Discovery of tyrosine-based potent and selective melanocortin-1 receptor small-molecule agonists with anti-inflammatory properties.
The melanocortin-1 receptor (MC-1R) is a G-protein-coupled receptor involved in inflammation and skin pigmentation. Compound 2 is the first highly potent and selective MC-1R small-molecule agonist reported. Compound 2 showed efficacy in an acute model of inflammation, which has demonstrated the role of MC-1R in modulation of inflammation. Topics: Acute Disease; Animals; Anti-Inflammatory Agents, Non-Steroidal; Combinatorial Chemistry Techniques; Humans; Inflammation; Lipopolysaccharides; Mice; Mice, Inbred BALB C; Receptors, Corticotropin; Receptors, Melanocortin; Structure-Activity Relationship; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha; Tyrosine | 2003 |