bms-191095 and Myocardial-Infarction

bms-191095 has been researched along with Myocardial-Infarction* in 3 studies

Other Studies

3 other study(ies) available for bms-191095 and Myocardial-Infarction

ArticleYear
GSK3beta inhibition and K(ATP) channel opening mediate acute opioid-induced cardioprotection at reperfusion.
    Basic research in cardiology, 2007, Volume: 102, Issue:4

    Both glycogen synthase kinase 3beta (GSK3beta) and the ATP-dependant potassium channel (K(ATP)) mediate opioid-induced cardioprotection (OIC). However, whether direct K(ATP) channel openers induce cardioprotection prior to reperfusion and their signaling cascade position with respect to GSK3beta inhibition is unknown. Therefore, we investigated the role of K(ATP) channel opening at reperfusion in OIC, and the interaction between the GSK signaling axis and K(ATP) channels in cardioprotection.Male Sprague-Dawley rats underwent 30 minutes ischemia with 2 hours of reperfusion and infarct size was determined. Rats given the nonselective opioid agonist, morphine (0.3 mg/kg), or the selective delta opioid agonist, BW373U86 (1.0 mg/kg), 5 minutes prior to reperfusion reduced infarct size (40.3+/-1.6*, 39.7+/-1.9* versus 60.0+/-1.1%, respectively, * P<0.001%). This protection was abrogated with prior administration of the putative sarcolemmal K(ATP) antagonist, HMR-1098 (6 mg/kg), or the putative mitochondrial K(ATP) antagonist, 5-HD (10 mg/kg). The putative sK(ATP) channel opener, P-1075 (1microg/kg) or the putative mK(ATP) channel opener, BMS-191095 (1 mg/kg) given 5 minutes prior to reperfusion also reduced infarct size (41.8+/-2.4*, 43.4+/-1.4*) and protection was abrogated by prior administration of the PI3k inhibitor wortmannin (60.0+/-1.7, 64.0+/-2.6%, respectively, * P<0.001). Cardioprotection afforded by the GSK inhibitor SB216763 (0.6 mg/kg) given 5 minutes prior to reperfusion was also partially blocked by either HMR or 5-HD and completely blocked when HMR and 5-HD were given in combination (40.8+/-1.6*, 50.4+/-1.6;; 49.4+/-1.7;, 61.6+/-1.6%, respectively, * or ; P<0.001). These data indicate that both the sK(ATP) and mK(ATP) channel are involved in acute OIC and the GSK signaling axis regulates cardioprotection via K(ATP) channel opening.

    Topics: Analgesics, Opioid; Androstadienes; Animals; Benzamides; Benzopyrans; Blood Pressure; Cardiotonic Agents; Disease Models, Animal; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Guanidines; Heart Rate; Imidazoles; Indoles; Ion Channel Gating; Male; Maleimides; Morphine; Myocardial Infarction; Myocardial Reperfusion Injury; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Piperazines; Potassium Channel Blockers; Potassium Channels; Protein Kinase Inhibitors; Pyridines; Rats; Rats, Sprague-Dawley; Sarcolemma; Signal Transduction; Time Factors; Wortmannin

2007
Effects of mitochondrial K(ATP) modulators on cardioprotection induced by chronic high altitude hypoxia in rats.
    Cardiovascular research, 2002, Aug-15, Volume: 55, Issue:3

    Adaptation of rats to intermittent high altitude hypoxia increases the tolerance of their hearts to acute ischemia/reperfusion injury. Our aim was to examine the role of mitochondrial ATP-sensitive potassium channels (K(ATP)) in this form of protection.. Adult male Wistar rats were exposed to hypoxia of 5000 m in a barochamber for 8 h/day, 5 days a week; the total number of exposures was 24-32. A control group was kept under normoxic conditions (200 m). Infarct size (tetrazolium staining) was measured in anesthetized open-chest animals subjected to 20-min regional ischemia (coronary artery occlusion) and 4-h reperfusion. Isolated perfused hearts were used to assess the recovery of contractile function following 20-min global ischemia and 40-min reperfusion. In the open-chest study, a selective mitochondrial K(ATP) blocker, 5-hydroxydecanoate (5 mg/kg), or openers, diazoxide (10 mg/kg) or BMS-191095 (10 mg/kg), were administered into the jugular vein 5 and 10 min before occlusion, respectively. In the isolated heart study, 5-hydroxydecanoate (250 micromol/l) or diazoxide (50 micromol/l) were added to the perfusion medium 5 or 10 min before ischemia, respectively.. In the control normoxic group, infarct size occupied 62.2+/-2.0% of the area at risk as compared with 52.7+/-2.5% in the chronically hypoxic group (P<0.05). Post-ischemic recovery of contractile function (dP/dt) reached 60.0+/-3.9% of the pre-ischemic value and it was improved to 72.4+/-1.2% by adaptation to hypoxia (P<0.05). While 5-hydroxydecanoate completely abolished these protective effects of chronic hypoxia, it had no appreciable influence in normoxic groups. In contrast, diazoxide significantly increased the recovery of contractile function and reduced infarct size in normoxic groups only. The later effect was also observed following treatment with BMS-191095.. The results suggest that opening of mitochondrial K(ATP) channels is involved in the cardioprotective mechanism conferred by long-term adaptation to intermittent high altitude hypoxia.

    Topics: Altitude; Analysis of Variance; Animals; Benzopyrans; Chronic Disease; Decanoic Acids; Diazoxide; Hydroxy Acids; Hypoxia; Imidazoles; Male; Mitochondria, Heart; Models, Animal; Myocardial Contraction; Myocardial Infarction; Myocardium; Perfusion; Potassium Channel Blockers; Potassium Channels; Rats; Rats, Wistar; Statistics, Nonparametric; Time Factors

2002
In vivo characterization of the mitochondrial selective K(ATP) opener (3R)-trans-4-((4-chlorophenyl)-N-(1H-imidazol-2-ylmethyl)dimethyl-2H-1-benzopyran-6-carbonitril monohydrochloride (BMS-191095): cardioprotective, hemodynamic, and electrophysiological e
    The Journal of pharmacology and experimental therapeutics, 2002, Volume: 303, Issue:1

    Recent studies have shown the importance of mitochondrial ATP-sensitive potassium channels (K(ATP)) in cardioprotection, and studies in vitro have shown that the benzopyran analog (3R)-trans- 4-((4-chlorophenyl)-N-(1H-imidazol-2-ylmethyl)dimethyl-2H-1-benzopyran-6-carbonitril monohydrochloride (BMS-191095) is a selective mitochondrial K(ATP) opener with cardioprotective activity. The goal of this study was to show selective cardioprotection for BMS-191095 in vivo without hemodynamic or cardiac electrophysiological effects expected for nonselective K(ATP) openers. BMS-191095 reduced infarct size in anesthetized dogs (90-min ischemia + 5-h reperfusion) in a dose-dependent manner (ED(25) = 0.4 mg/kg i.v.) with efficacious plasma concentrations of 0.3 to 1.0 microM, which were consistent with potency in vitro. None of the doses of BMS-191095 tested caused any effect on peripheral or coronary hemodynamic status. Further studies in dogs showed no effects of BMS-191095 on cardiac conduction or action potential configuration within the cardioprotective dose range. In a programmed electrical stimulation model, BMS-191095 showed no proarrhythmic effects, which is consistent with its lack of effects on cardiac electrophysiological status. BMS-191095 is a potent and efficacious cardioprotectant that is devoid of hemodynamic and cardiac electrophysiological side effects of first generation K(ATP) openers, which open both sarcolemmal and mitochondrial K(ATP). Selective opening or activation of mitochondrial K(ATP) seems to be a potentially effective strategy for developing well tolerated and efficacious K(ATP) openers.

    Topics: Animals; Arrhythmias, Cardiac; Benzopyrans; Blood Pressure; Cardiotonic Agents; Coronary Vessels; Disease Models, Animal; Dogs; Dose-Response Relationship, Drug; Female; Heart Rate; Hemodynamics; Imidazoles; Ion Channel Gating; Male; Membrane Proteins; Mitochondria, Heart; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion; Potassium Channels

2002