bmn-673 has been researched along with Ovarian-Neoplasms* in 13 studies
7 review(s) available for bmn-673 and Ovarian-Neoplasms
Article | Year |
---|---|
[Place of PARP inhibitors in the treatment of endometrial and cervical cancers].
New molecular therapeutic approaches have emerged in recent years for advanced gynaecological cancers, including targeted therapies such as poly-ADP-ribose polymerase inhibitors (PARPi). These have demonstrated efficacy in high-grade serous ovarian cancers in patients carrying a mutation in the BRCA gene, which predisposes them to breast and ovarian cancers. Clinical and pre-clinical data suggest that the activity of PARPi inhibitors may not be limited to BRCA mutated tumours and may involve the homologous recombination pathway. These data raise the question of the potential efficacy of PARPi in advanced endometrial and cervical cancers where treatment options are currently limited. At present, there are few data available on the activity of PARPi in endometrial and cervical cancers, but some results seem promising. In this review, we present a synthesis of the available studies concerning PARPi in endometrial and cervical cancer. Topics: Antineoplastic Agents; Cell Line, Tumor; Cisplatin; Clinical Trials as Topic; DNA Damage; DNA Repair-Deficiency Disorders; Endometrial Neoplasms; Female; Humans; Indazoles; Indoles; Ovarian Neoplasms; Papillomavirus Infections; Phthalazines; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Uterine Cervical Neoplasms | 2022 |
Advances in the Treatment of Ovarian Cancer Using PARP Inhibitors and the Underlying Mechanism of Resistance.
The standard treatment for advanced ovarian cancer is cytoreductive surgery followed by cytotoxic chemotherapy. However, it has high risk of recurrence and poor prognosis. Poly(ADPribose) polymerase (PARP) inhibitors selectively target DNA double-strand breaks (DSBs) in tumor cells that cannot be repaired and induce the synthetic lethality of BRCA1/2 mutation cancers. PARP inhibitors are clinically used to treat recurrent ovarian cancer and show significant efficacy in ovarian cancer patients with homologous recombination repair (HRR) pathway defects. PARP inhibitors also have significant clinical benefits in patients without HR defects. With the increasingly extensive clinical application of PARP inhibitors, the possibility of acquiring drug resistance is high. Therefore, clinical strategies should be adopted to manage drug resistance of PARP inhibitors. This study aims to summarize the indications and toxicity of PARP inhibitors, the mechanism of action, targeted treatment of drug resistance, and potential methods to manage drug-resistant diseases. We used the term "ovarian cancer" and the names of each PARP inhibitor as keywords to search articles published in the Medical Subject Headings (MeSH) on Pubmed, along with the keywords "clinicaltrials.gov" and "google.com/patents" as well as "uspto.gov." The FDA has approved olaparib, niraparib, and rucaparib for the treatment of recurrent epithelial ovarian cancer (EOC). Talazoparib and veliparib are currently in early trials and show promising clinical results. The mechanism underlying resistance to PARP inhibitors and the clinical strategies to overcome them remain unclear. Understanding the mechanism of resistance to PARP inhibitors and their relationship with platinum resistance may help with the development of antiresistance therapies and optimization of the sequence of drug application in the future clinical treatment of ovarian cancer. Topics: Antineoplastic Agents; Benzimidazoles; BRCA1 Protein; BRCA2 Protein; Carcinoma, Ovarian Epithelial; DNA Repair; Drug Resistance, Neoplasm; Female; Humans; Indazoles; Indoles; Neoplasm Recurrence, Local; Ovarian Neoplasms; Phthalazines; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases | 2020 |
Poly (ADP-Ribose) Polymerase Inhibitors: Talazoparib in Ovarian Cancer and Beyond.
Genetic complexity and DNA damage repair defects are common in different cancer types and can induce tumor-specific vulnerabilities. Poly(ADP-ribose) polymerase (PARP) inhibitors exploit defects in the DNA repair pathway through synthetic lethality and have emerged as promising anticancer therapies, especially in tumors harboring deleterious germline or somatic breast cancer susceptibility gene (BRCA) mutations. However, the utility of PARP inhibitors could be expanded beyond germline BRCA1/2 mutated cancers by causing DNA damage with cytotoxic agents in the presence of a DNA repair inhibitor. US Food and Drug Administration (FDA)-approved PARP inhibitors include olaparib, rucaparib, and niraparib, while veliparib is in the late stage of clinical development. Talazoparib inhibits PARP catalytic activity, trapping PARP1/2 on damaged DNA, and it has been approved by the US FDA for the treatment of metastatic germline BRCA1/2 mutated breast cancers in October 2018. The talazoparib side effect profile more closely resembles traditional chemotherapeutics rather than other clinically approved PARP inhibitors. In this review, we discuss the scientific evidence that has emerged from both experimental and clinical studies in the development of talazoparib. Future directions will include optimizing combination therapy with chemotherapy, immunotherapies and targeted therapies, and in developing and validating biomarkers for patient selection and stratification, particularly in malignancies with 'BRCAness'. Topics: Antineoplastic Agents; Breast Neoplasms; Female; Humans; Ovarian Neoplasms; Phthalazines; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases | 2020 |
A decade of clinical development of PARP inhibitors in perspective.
Genomic instability is a hallmark of cancer, and often is the result of altered DNA repair capacities in tumour cells. DNA damage repair defects are common in different cancer types; these alterations can also induce tumour-specific vulnerabilities that can be exploited therapeutically. In 2009, a first-in-man clinical trial of the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib clinically validated the synthetic lethal interaction between inhibition of PARP1, a key sensor of DNA damage, and BRCA1/BRCA2 deficiency. In this review, we summarize a decade of PARP inhibitor clinical development, a work that has resulted in the registration of several PARP inhibitors in breast (olaparib and talazoparib) and ovarian cancer (olaparib, niraparib and rucaparib, either alone or following platinum chemotherapy as maintenance therapy). Over the past 10 years, our knowledge on the mechanism of action of PARP inhibitor as well as how tumours become resistant has been extended, and we summarise this work here. We also discuss opportunities for expanding the precision medicine approach with PARP inhibitors, identifying a wider population who could benefit from this drug class. This includes developing and validating better predictive biomarkers for patient stratification, mainly based on homologous recombination defects beyond BRCA1/BRCA2 mutations, identifying DNA repair deficient tumours in other cancer types such as prostate or pancreatic cancer, or by designing combination therapies with PARP inhibitors. Topics: BRCA1 Protein; BRCA2 Protein; Breast Neoplasms; Female; Genomic Instability; Humans; Indazoles; Indoles; Ovarian Neoplasms; Phthalazines; Piperazines; Piperidines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors | 2019 |
PARP Inhibitors in Ovarian Cancer.
Treatment of Epithelial Ovarian Cancer (EOC), historically based on surgery and platinum doublet chemotherapy, is associated with high risk of relapse and poor prognosis for recurrent disease. In this landscape, the innovative treatment with PARP inhibitors (PARPis) demonstrated an outstanding activity in EOC, and is currently changing clinical practice in BRCA mutant patients.. The study aimed to highlight the mechanism of action, pharmacokinetics, clinical activity, indications and current strategies of development of Olaparib, Niraparib, Rucaparib, Talazoparib and Veliparib, the 5 most relevant PARPis.. We performed a review on Pubmed using 'ovarian cancer' and the name of each PARPi (PARP inhibitor) discussed in the review as Medical Subject Headings (MeSH) keywords. The same search was performed on "clinicaltrial.gov" to identify ongoing clinical trials and on "google. com/patents" and "uspto.gov" for recent patents exploring PARPIs in ovarian cancer.. Olaparib, Niraparib and Rucaparib are already approved for the treatment of recurrent EOC and their indications are partially overlapping. Talazoparib and Veliparib are promising PARPis, but currently under investigation in early phase trials. Several studies are evaluating PARPis in monotherapy or in associations, in a wide range of settings (i.e. first line, neoadjuvant, platinum-sensitive and resistant disease).. PARPis are valuable options in patients with recurrent ovarian cancer with promising activity in different stages of this disease. Further studies are required to better define optimal clinical settings, predictors of response beyond BRCA mutations and strategies to overcome secondary resistance of PARPis therapy in EOC. Topics: Animals; Antineoplastic Agents; Drug Resistance, Neoplasm; Female; Humans; Ovarian Neoplasms; Phthalazines; Piperazines; Poly(ADP-ribose) Polymerase Inhibitors | 2018 |
Using PARP Inhibitors in the Treatment of Patients With Ovarian Cancer.
Use of poly(ADP-ribose) polymerase (PARP) inhibitors has greatly increased over the past 5 years. With several new Food and Drug Administration (FDA) approvals, three PARP inhibitors have entered into standard of care treatment for epithelial ovarian cancer (including ovarian, fallopian tube, and primary peritoneal cancer). Olaparib and rucaparib currently have indications for treatment of recurrent BRCA mutant ovarian cancer. Olaparib, rucaparib, and niraparib all have indications for maintenance therapy in recurrent platinum-sensitive ovarian cancer after response to platinum-based therapy. In our practice, we use both olaparib and rucaparib in the recurrent setting, and all three PARP inhibitors in the maintenance setting. Choice of which PARP inhibitor to use in either setting is largely based upon baseline laboratory values, number of prior therapies, and presence of a BRCA mutation and/or homologous recombination deficiency (HRD). As (HRD) and other biomarker assessments continue to improve, we anticipate being able to better identify which patients might most benefit from PARP inhibitor therapy in the future. The clinically available PARP inhibitors are currently undergoing extensive investigations in clinical trials. Other newer agents such as talazoparib, veliparib, 2X-121, and CEP-9722 are in earlier stages of development. As more FDA-approved indications for PARP inhibitor therapy in ovarian cancer become available, we anticipate the decision of which PARP inhibitor to use will become increasingly complex. Topics: Antineoplastic Combined Chemotherapy Protocols; Benzimidazoles; BRCA1 Protein; BRCA2 Protein; Carbazoles; Carcinoma, Ovarian Epithelial; Female; Humans; Indazoles; Indoles; Neoplasm Recurrence, Local; Ovarian Neoplasms; Ovary; Phthalazines; Phthalimides; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors | 2018 |
PARP inhibitors in ovarian cancer: current status and future promise.
Clinical investigation of poly(ADP-ribose) polymerase (PARP) inhibitors for ovarian cancer treatment has rapidly evolved from observations of single-agent in vitro activity of these agents in BRCA-deficient cancer cells in 2005 to the initiation of multiple phase III studies in 2013. With clinical trial design and treatment of ovarian cancer increasingly based on histological and molecular characteristics, PARP inhibitors are on the horizon of becoming the first biologic agents to be used to treat ovarian cancer based upon pre-selection characteristics of the patient's cancer. PARP inhibitors are most active in ovarian cancers that have defects or aberrations in DNA repair; use of these agents has been of particular interest in high grade serous cancers (HGSC), where studies have shown that ~50% of HGSC have abnormalities of DNA repair through BRCA germline and somatic mutation, post-translational changes of BRCA, and abnormalities of other DNA repair molecules. In addition, as aberrant DNA pathways in other histological subtypes of ovarian cancer are identified, and through the combination of PARP inhibitors with other biologic agents, the pool of eligible patients who may benefit from PARP inhibitors will likely expand. Pending review by the Food and Drug Administration (FDA) and the outcome of confirmatory phase III studies, PARP inhibitors could become the first FDA-approved biologic agent for ovarian cancer and also the first new FDA-approval in ovarian cancer since carboplatin and gemcitabine were approved for platinum sensitive ovarian cancer in 2006. This review discusses the PARP inhibitors that are currently in testing for ovarian cancer treatment and the future of this class of anti-cancer agents. Topics: Antineoplastic Agents; Benzimidazoles; DNA Repair; Female; Genes, BRCA1; Genes, BRCA2; Humans; Indazoles; Indoles; Ovarian Neoplasms; Phthalazines; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors | 2014 |
6 other study(ies) available for bmn-673 and Ovarian-Neoplasms
Article | Year |
---|---|
Modulation of Early Mitotic Inhibitor 1 (EMI1) depletion on the sensitivity of PARP inhibitors in BRCA1 mutated triple-negative breast cancer cells.
Triple negative breast cancer (TNBC) represents approximately 10-15% of all breast cancers and has a poor outcome as it lacks a receptor target for therapy, and TNBC is frequently associated with a germline mutation of BRCA1. Poly (ADP-ribose) polymerase inhibitor (PARPi) drugs have demonstrated some effectiveness in treating BRCA1 or BRCA2 mutated breast and ovarian cancers but resistance to PARPi is common. Published results found that resistance to Olaparib, a PARPi, can be due to downregulation of EMI1 and the consequent upregulation of the RAD51 recombinase. Using a tissue culture-based cell viability assay, we extended those observations to another PARPi and to other chemotherapy drugs that affect DNA repair or the cell cycle. As we expected, EMI1 downregulation resulted in resistance to another PARPi drug, Talazoparib. EMI1 downregulation also led to resistance to other cytotoxic drugs, Cisplatin and CHK1 inhibitor. Notably, increasing the RAD51 protein expression only recapitulated some, but not all, of the effects of EMI1 depletion in conferring to the cell resistance to different PARPi and the other cytotoxic drugs. These results suggest that the downstream effects of EMI1 downregulation that contribute to PARPi resistance are increasing the concentration of RAD51 protein in the cell and blocking mitotic entry. We found that combining CHK1 inhibitor with olaparib results in restoration of sensitivity even when EMI1 expression is downregulated. This combination therapy may be a means to overcome the PARPi resistance in BRCA1-deficient TNBC cells. Topics: BRCA1 Protein; BRCA2 Protein; Cell Cycle; Cell Cycle Proteins; Cell Line, Tumor; Cisplatin; Down-Regulation; Drug Resistance, Neoplasm; F-Box Proteins; Female; Germ-Line Mutation; Humans; Ovarian Neoplasms; Phthalazines; Piperazines; Poly(ADP-ribose) Polymerase Inhibitors; Rad51 Recombinase; Triple Negative Breast Neoplasms | 2021 |
PARP1 blockade is synthetically lethal in XRCC1 deficient sporadic epithelial ovarian cancers.
PARP1 inhibitor (Niraparib, Olaparib, Rucaparib) maintenance therapy improves progression-free survival in platinum sensitive sporadic epithelial ovarian cancers. However, biomarkers of response to PARPi therapy is yet to be clearly defined. XRCC1, a scaffolding protein, interacts with PARP1 during BER and SSBR. In a large clinical cohort of 525 sporadic ovarian cancers, high XRCC1 or high PARP1 protein levels was not only associated with aggressive phenotypes but was also significantly linked with poor progression-free survival (p = 0.048 & p = 0.001 respectively) and poor ovarian cancer-specific survival (p = 0.020 & p = 0.008 respectively). Pre-clinically, Olaparib and Talazoparib therapy were selectively toxic in XRCC1 deficient or knock-out platinum sensitive ovarian cancer cells in 2D and 3D models. Increased sensitivity was associated with DNA double-strand break accumulation, cell cycle arrest and apoptotic cell accumulation. We conclude that XRCC1 deficiency predicts sensitivity to PARP inhibitor therapy. PARP1 targeting is a promising new approach in XRCC1 deficient ovarian cancers. Topics: Carcinoma, Ovarian Epithelial; Cell Cycle Checkpoints; Cell Line, Tumor; DNA Breaks, Double-Stranded; Drug Resistance, Neoplasm; Female; Follow-Up Studies; Gene Expression Profiling; Gene Knockout Techniques; Humans; Kaplan-Meier Estimate; Ovarian Neoplasms; Ovary; Phthalazines; Piperazines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Prognosis; Progression-Free Survival; Synthetic Lethal Mutations; Tissue Array Analysis; X-ray Repair Cross Complementing Protein 1 | 2020 |
Poly(adenosine diphosphate ribose) polymerase inhibitors induce autophagy-mediated drug resistance in ovarian cancer cells, xenografts, and patient-derived xenograft models.
Poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors exhibit promising activity against ovarian cancers, but their efficacy can be limited by acquired drug resistance. This study explores the role of autophagy in regulating the sensitivity of ovarian cancer cells to PARP inhibitors.. Induction of autophagy was detected by punctate LC3 fluorescence staining, LC3I to LC3II conversion on Western blot analysis, and electron microscopy. Enhanced growth inhibition and apoptosis were observed when PARP inhibitors were used with hydroxychloroquine, chloroquine (CQ), or LYS05 to block the hydrolysis of proteins and lipids in autophagosomes or with small interfering RNA against ATG5 or ATG7 to prevent the formation of autophagosomes. The preclinical efficacy of the combination of CQ and olaparib was evaluated with a patient-derived xenograft (PDX) and the OVCAR8 human ovarian cancer cell line.. Four PARP inhibitors (olaparib, niraparib, rucaparib, and talazoparib) induced autophagy in a panel of ovarian cancer cells. Inhibition of autophagy with CQ enhanced the sensitivity of ovarian cancer cells to PARP inhibitors. In vivo, olaparib and CQ produced additive growth inhibition in OVCAR8 xenografts and a PDX. Olaparib inhibited PARP activity, and this led to increased reactive oxygen species (ROS) and an accumulation of γ-H2AX. Inhibition of autophagy also increased ROS and γ-H2AX and enhanced the effect of olaparib on both entities. Treatment with olaparib increased phosphorylation of ATM and PTEN while decreasing the phosphorylation of AKT and mTOR and inducing autophagy.. PARP inhibitor-induced autophagy provides an adaptive mechanism of resistance to PARP inhibitors in cancer cells with wild-type BRCA, and a combination of PARP inhibitors with CQ or other autophagy inhibitors could improve outcomes for patients with ovarian cancer. Topics: Animals; Antineoplastic Agents; Apoptosis; Autophagy; Cell Line, Tumor; Chloroquine; Drug Resistance, Neoplasm; Drug Synergism; Female; Humans; Indazoles; Mice, Nude; Mice, SCID; Ovarian Neoplasms; Phthalazines; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Xenograft Model Antitumor Assays | 2020 |
Targeted blockade of HSP90 impairs DNA-damage response proteins and increases the sensitivity of ovarian carcinoma cells to PARP inhibition.
Pharmacological inhibition of PARP is a promising approach in treating high grade serous ovarian carcinoma (HGSOC). PARP inhibitors (PARPi) are most active in patients with defects in DNA damage repair (DDR) mechanisms, such as alterations in expression/function of DNA repair and homologous recombination (HR) genes/proteins, including Topics: Animals; Apoptosis; Cell Cycle; Cell Line, Tumor; Disease Models, Animal; DNA Damage; DNA Repair; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Female; Homologous Recombination; HSP90 Heat-Shock Proteins; Humans; Immunohistochemistry; Mice; Ovarian Neoplasms; Phthalazines; Poly(ADP-ribose) Polymerase Inhibitors; Radiation, Ionizing; Xenograft Model Antitumor Assays | 2019 |
Preclinical evaluation of the PARP inhibitor BMN-673 for the treatment of ovarian clear cell cancer.
To determine if models of ovarian clear cell carcinomas (OCCCs) harbouring defects in homologous recombination (HR) DNA repair of double strand breaks (DSBs) are sensitive to cisplatin and/or PARP inhibition.. The HR status of 12 OCCC cell lines was determined using RAD51/γH2AX foci formation assays. Sensitivity to cisplatin and the PARP inhibitor BMN-673 was correlated with HR status. BRCA1, BRCA2, MRE11 and PTEN loss of expression was investigated as a potential determinant of BMN-673 sensitivity. A tissue microarray containing 50 consecutive primary OCCC was assessed for PTEN expression using immunohistochemistry.. A subset of OCCC cells displayed reduced RAD51 foci formation in the presence of DNA DSBs, suggestive of HR defects. HR-defective OCCC cells, with the exception of KOC-7c, had higher sensitivity to cisplatin/ BMN-673 than HR-competent OCCC cell lines (Log10 SF50 -9.4 (SD +/- 0.29) vs -8.1 (SD +/- 0.35), mean difference 1.3, p < 0.01). Of the cell lines studied, two, TOV-21G and KOC-7c, showed loss of PTEN expression. In primary OCCCs, loss of PTEN expression was observed in 10% (5/49) of cases.. A subset of OCCC cells are sensitive to PARP inhibition in vitro, which can be predicted by HR defects as defined by γH2AX/RAD51 foci formation. These results provide a rationale for the testing of HR deficiency and PARP inhibitors as a targeted therapy in a subset of OCCCs. Topics: BRCA1 Protein; BRCA2 Protein; Cell Line, Tumor; Cisplatin; DNA Breaks, Double-Stranded; DNA Repair; Drug Screening Assays, Antitumor; Female; Humans; MRE11 Homologue Protein; Ovarian Neoplasms; Phthalazines; Poly(ADP-ribose) Polymerase Inhibitors; PTEN Phosphohydrolase; Tissue Array Analysis | 2017 |
The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1(-/-) murine model of ovarian cancer.
Familial breast and ovarian cancer are often caused by inherited mutations of BRCA1. While current prognoses for such patients are rather poor, inhibition of poly-ADP ribose polymerase 1 (PARP1) induces synthetic lethality in cells that are defective in homologous recombination. BMN 673 is a potent PARP1 inhibitor that is being clinically evaluated for treatment of BRCA-mutant cancers. Using the Brca1-deficient murine epithelial ovarian cancer cell line BR5FVB1-Akt, we investigated whether the antitumor effects of BMN 673 extend beyond its known pro-apoptotic function. Administration of modest amounts of BMN 673 greatly improved the survival of mice bearing subcutaneous or intraperitoneal tumors. We thus hypothesized that BMN 673 may influence the composition and function of immune cells in the tumor microenvironment. Indeed, BMN 673 significantly increases the number of peritoneal CD8(+) T cells and NK cells as well as their production of IFN-γ and TNF-α. These data suggest that the cell stress caused by BMN 673 induces not only cancer cell-intrinsic apoptosis but also cancer cell-extrinsic antitumor immune effects in a syngeneic murine model of ovarian cancer. BMN 673 may therefore serve as a promising adjuvant therapy to immunotherapy to achieve durable responses among patients whose tumors harbor defects in homologous recombination. Topics: Animals; Disease Models, Animal; Enzyme Inhibitors; Female; Flow Cytometry; Genes, BRCA1; Mice; Mice, Knockout; Ovarian Neoplasms; Phthalazines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Real-Time Polymerase Chain Reaction | 2015 |