bmn-673 and Melanoma

bmn-673 has been researched along with Melanoma* in 2 studies

Other Studies

2 other study(ies) available for bmn-673 and Melanoma

ArticleYear
PARP Inhibitors Talazoparib and Niraparib Sensitize Melanoma Cells to Ionizing Radiation.
    Genes, 2021, 05-31, Volume: 12, Issue:6

    (1) Background: Niraparib and Talazoparib are poly (ADP-ribose) polymerase (PARP) 1/2 inhibitors. It is assumed that combining PARP inhibitors with radiotherapy could be beneficial for cancer treatment. In this study, melanoma cells were treated with Niraparib and Talazoparib in combination with ionizing radiation (IR). (2) Methods: The effects of Talazoparib and Niraparib in combination with IR on cell death, clonogenicity and cell cycle arrest were studied in healthy primary fibroblasts and primary melanoma cells. (3) Results: The melanoma cells had a higher PARP1 and PARP2 content than the healthy fibroblasts, and further increased their PARP2 content after the combination therapy. PARP inhibitors both sensitized fibroblasts and melanoma cells to IR. A clear supra-additive effect of KI+IR treatment was detected in two melanoma cell lines analyzing the surviving fraction. The cell death rate increased in the healthy fibroblasts, but to a larger extent in melanoma cells after combined treatment. Finally, a lower percentage of cells in the radiosensitive G2/M phase is present in the healthy fibroblasts compared to the melanoma cells. (4) Conclusions: Both PARP inhibitors sensitize melanoma cells to IR. Healthy tissue seems to be less affected than melanoma cells. However, the great heterogeneity of the results suggests prior testing of the tumor cells in order to personalize the treatment.

    Topics: Cell Cycle; Cell Line, Tumor; Fibroblasts; Humans; Indazoles; Melanoma; Phthalazines; Piperidines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Radiation Tolerance

2021
PARP inhibitors combined with ionizing radiation induce different effects in melanoma cells and healthy fibroblasts.
    BMC cancer, 2020, Aug-18, Volume: 20, Issue:1

    PARP inhibitors niraparib and talazoparib are FDA approved for special cases of breast cancer. PARP is an interesting repair protein which is frequently affected in cancer cells. We studied the combined action of talazoparib or niraparib with ionizing radiation in melanoma cells and healthy fibroblasts.. Homologous recombination (HR) status in six different melanoma cell lines and healthy fibroblasts was assessed. Cell cultures were treated with PARP inhibitors talazoparib or niraparib and ionizing radiation (IR). Apoptosis, necrosis and cell cycle distribution was analyzed via flow cytometry. Cell migration was studied by scratch assays.. Studied melanoma cell cultures are HR deficient. Studied healthy fibroblasts are HR proficient. Talazoparib and niraparib have congruent effects within the same cell cultures. In all cell cultures, combined treatment increases cell death and G2/M arrest compared to IR. Combined treatment in melanoma cells distinctly increases G2/M arrest. Healthy fibroblasts are less affected by G2/M arrest. Treatment predominantly decelerates or does not modify migration. In two cell cultures migration is enhanced under the inhibitors.. Although the two PARP inhibitors talazoparib and niraparib appear to be suitable for a combination treatment with ionizing radiation in our in vitro studies, a combination treatment cannot generally be recommended. There are clear interindividual differences in the effect of the inhibitors on different melanoma cells. Therefore, the effect on the cancer cells should be studied prior to a combination therapy. Since melanoma cells increase more strongly than fibroblasts in G2/M arrest, the fractional application of combined treatment should be further investigated.

    Topics: Apoptosis; Cell Survival; Chemoradiotherapy; Drug Interactions; Fibroblasts; G2 Phase Cell Cycle Checkpoints; Homologous Recombination; Humans; Indazoles; Melanoma; Phthalazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Primary Cell Culture; Skin; Skin Neoplasms; Tumor Cells, Cultured

2020