bmn-673 and Carcinoma--Ovarian-Epithelial

bmn-673 has been researched along with Carcinoma--Ovarian-Epithelial* in 3 studies

Reviews

2 review(s) available for bmn-673 and Carcinoma--Ovarian-Epithelial

ArticleYear
Advances in the Treatment of Ovarian Cancer Using PARP Inhibitors and the Underlying Mechanism of Resistance.
    Current drug targets, 2020, Volume: 21, Issue:2

    The standard treatment for advanced ovarian cancer is cytoreductive surgery followed by cytotoxic chemotherapy. However, it has high risk of recurrence and poor prognosis. Poly(ADPribose) polymerase (PARP) inhibitors selectively target DNA double-strand breaks (DSBs) in tumor cells that cannot be repaired and induce the synthetic lethality of BRCA1/2 mutation cancers. PARP inhibitors are clinically used to treat recurrent ovarian cancer and show significant efficacy in ovarian cancer patients with homologous recombination repair (HRR) pathway defects. PARP inhibitors also have significant clinical benefits in patients without HR defects. With the increasingly extensive clinical application of PARP inhibitors, the possibility of acquiring drug resistance is high. Therefore, clinical strategies should be adopted to manage drug resistance of PARP inhibitors. This study aims to summarize the indications and toxicity of PARP inhibitors, the mechanism of action, targeted treatment of drug resistance, and potential methods to manage drug-resistant diseases. We used the term "ovarian cancer" and the names of each PARP inhibitor as keywords to search articles published in the Medical Subject Headings (MeSH) on Pubmed, along with the keywords "clinicaltrials.gov" and "google.com/patents" as well as "uspto.gov." The FDA has approved olaparib, niraparib, and rucaparib for the treatment of recurrent epithelial ovarian cancer (EOC). Talazoparib and veliparib are currently in early trials and show promising clinical results. The mechanism underlying resistance to PARP inhibitors and the clinical strategies to overcome them remain unclear. Understanding the mechanism of resistance to PARP inhibitors and their relationship with platinum resistance may help with the development of antiresistance therapies and optimization of the sequence of drug application in the future clinical treatment of ovarian cancer.

    Topics: Antineoplastic Agents; Benzimidazoles; BRCA1 Protein; BRCA2 Protein; Carcinoma, Ovarian Epithelial; DNA Repair; Drug Resistance, Neoplasm; Female; Humans; Indazoles; Indoles; Neoplasm Recurrence, Local; Ovarian Neoplasms; Phthalazines; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases

2020
Using PARP Inhibitors in the Treatment of Patients With Ovarian Cancer.
    Current treatment options in oncology, 2018, 11-15, Volume: 19, Issue:12

    Use of poly(ADP-ribose) polymerase (PARP) inhibitors has greatly increased over the past 5 years. With several new Food and Drug Administration (FDA) approvals, three PARP inhibitors have entered into standard of care treatment for epithelial ovarian cancer (including ovarian, fallopian tube, and primary peritoneal cancer). Olaparib and rucaparib currently have indications for treatment of recurrent BRCA mutant ovarian cancer. Olaparib, rucaparib, and niraparib all have indications for maintenance therapy in recurrent platinum-sensitive ovarian cancer after response to platinum-based therapy. In our practice, we use both olaparib and rucaparib in the recurrent setting, and all three PARP inhibitors in the maintenance setting. Choice of which PARP inhibitor to use in either setting is largely based upon baseline laboratory values, number of prior therapies, and presence of a BRCA mutation and/or homologous recombination deficiency (HRD). As (HRD) and other biomarker assessments continue to improve, we anticipate being able to better identify which patients might most benefit from PARP inhibitor therapy in the future. The clinically available PARP inhibitors are currently undergoing extensive investigations in clinical trials. Other newer agents such as talazoparib, veliparib, 2X-121, and CEP-9722 are in earlier stages of development. As more FDA-approved indications for PARP inhibitor therapy in ovarian cancer become available, we anticipate the decision of which PARP inhibitor to use will become increasingly complex.

    Topics: Antineoplastic Combined Chemotherapy Protocols; Benzimidazoles; BRCA1 Protein; BRCA2 Protein; Carbazoles; Carcinoma, Ovarian Epithelial; Female; Humans; Indazoles; Indoles; Neoplasm Recurrence, Local; Ovarian Neoplasms; Ovary; Phthalazines; Phthalimides; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors

2018

Other Studies

1 other study(ies) available for bmn-673 and Carcinoma--Ovarian-Epithelial

ArticleYear
PARP1 blockade is synthetically lethal in XRCC1 deficient sporadic epithelial ovarian cancers.
    Cancer letters, 2020, 01-28, Volume: 469

    PARP1 inhibitor (Niraparib, Olaparib, Rucaparib) maintenance therapy improves progression-free survival in platinum sensitive sporadic epithelial ovarian cancers. However, biomarkers of response to PARPi therapy is yet to be clearly defined. XRCC1, a scaffolding protein, interacts with PARP1 during BER and SSBR. In a large clinical cohort of 525 sporadic ovarian cancers, high XRCC1 or high PARP1 protein levels was not only associated with aggressive phenotypes but was also significantly linked with poor progression-free survival (p = 0.048 & p = 0.001 respectively) and poor ovarian cancer-specific survival (p = 0.020 & p = 0.008 respectively). Pre-clinically, Olaparib and Talazoparib therapy were selectively toxic in XRCC1 deficient or knock-out platinum sensitive ovarian cancer cells in 2D and 3D models. Increased sensitivity was associated with DNA double-strand break accumulation, cell cycle arrest and apoptotic cell accumulation. We conclude that XRCC1 deficiency predicts sensitivity to PARP inhibitor therapy. PARP1 targeting is a promising new approach in XRCC1 deficient ovarian cancers.

    Topics: Carcinoma, Ovarian Epithelial; Cell Cycle Checkpoints; Cell Line, Tumor; DNA Breaks, Double-Stranded; Drug Resistance, Neoplasm; Female; Follow-Up Studies; Gene Expression Profiling; Gene Knockout Techniques; Humans; Kaplan-Meier Estimate; Ovarian Neoplasms; Ovary; Phthalazines; Piperazines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Prognosis; Progression-Free Survival; Synthetic Lethal Mutations; Tissue Array Analysis; X-ray Repair Cross Complementing Protein 1

2020