blister has been researched along with Fibrosis* in 4 studies
4 other study(ies) available for blister and Fibrosis
Article | Year |
---|---|
Targeting Cell Contractile Forces: A Novel Minimally Invasive Treatment Strategy for Fibrosis.
Fibrosis is a complication of tendon injury where excessive scar tissue accumulates in and around the injured tissue, leading to painful and restricted joint motion. Unfortunately, fibrosis tends to recur after surgery, creating a need for alternative approaches to disrupt scar tissue. We posited a strategy founded on mechanobiological principles that collagen under tension generated by fibroblasts is resistant to degradation by collagenases. In this study, we tested the hypothesis that blebbistatin, a drug that inhibits cellular contractile forces, would increase the susceptibility of scar tissue to collagenase degradation. Decellularized tendon scaffolds (DTS) were treated with bacterial collagenase with or without external or cell-mediated internal tension. External tension producing strains of 2-4% significantly reduced collagen degradation compared with non-tensioned controls. Internal tension exerted by human fibroblasts seeded on DTS significantly reduced the area of the scaffolds compared to acellular controls and inhibited collagen degradation compared to free-floating DTS. Treatment of cell-seeded DTS with 50 mM blebbistatin restored susceptibility to collagenase degradation, which was significantly greater than in untreated controls (p < 0.01). These findings suggest that therapies combining collagenases with drugs that reduce cell force generation should be considered in cases of tendon fibrosis that do not respond to physiotherapy. Topics: Collagen; Collagenases; Fibroblasts; Fibrosis; Heterocyclic Compounds, 4 or More Rings; Humans; Stress, Mechanical; Tendons; Tissue Scaffolds | 2020 |
Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers.
After cardiac injury, activated cardiac myofibroblasts can influence tissue electrophysiology. Because mechanical coupling through adherens junctions provides a route for intercellular communication, we tested the hypothesis that myofibroblasts exert tonic contractile forces on the cardiomyocytes and affect electric propagation via a process of mechanoelectric feedback.. The role of mechanoelectric feedback was examined in transforming growth factor-β-treated monolayers of cocultured myofibroblasts and neonatal rat ventricular cells by inhibiting myofibroblast contraction and blocking mechanosensitive channels. Untreated (control) and transforming growth factor-β-treated (fibrotic) anisotropic monolayers were optically mapped for electrophysiological comparison. Longitudinal conduction velocity, transverse conduction velocity, and normalized action potential upstroke velocity (dV/dt(max)) significantly decreased in fibrotic monolayers (14.4 ± 0.7 cm/s [mean ± SEM], 4.1 ± 0.3 cm/s [n=53], and 3.1 ± 0.2% per ms [n=14], respectively) compared with control monolayers (27.2 ± 0.8 cm/s, 8.5 ± 0.4 cm/s [n=40], and 4.9 ± 0.1% per ms [n=12], respectively). Application of the excitation-contraction uncoupler blebbistatin or the mechanosensitive channel blocker gadolinium or streptomycin dramatically increased longitudinal conduction velocity, transverse conduction velocity, and dV/dt(max) in fibrotic monolayers (35.9 ± 1.5 cm/s, 10.3 ± 0.6 cm/s [n=17], and 4.5 ± 0.1% per ms [n=14], respectively). Similar results were observed with connexin43-silenced cardiac myofibroblasts. Spiral-wave induction in fibrotic monolayers also decreased after the aforementioned treatments. Finally, traction force measurements of individual myofibroblasts showed a significant increase with transforming growth factor-β, a decrease with blebbistatin, and no change with mechanosensitive channel blockers.. These observations suggest that myofibroblast-myocyte mechanical interactions develop during cardiac injury, and that cardiac conduction may be impaired as a result of increased mechanosensitive channel activation owing to tension applied to the myocyte by the myofibroblast. Topics: Animals; Animals, Newborn; Biomechanical Phenomena; Cell Communication; Cells, Cultured; Coculture Techniques; Electric Conductivity; Feedback, Physiological; Fibrosis; Gadolinium; Heterocyclic Compounds, 4 or More Rings; Intercellular Junctions; Models, Animal; Myocardium; Myocytes, Cardiac; Myofibroblasts; Rats; Rats, Sprague-Dawley; Streptomycin; Transforming Growth Factor beta | 2011 |
Cardiac troponin T mutations promote life-threatening arrhythmias.
Mutations in contractile proteins in heart muscle can cause anatomical changes that result in cardiac arrhythmias and sudden cardiac death. However, a conundrum has existed because mutations in one such contractile protein, a so-called Ca2+ sensor troponin T (TnT), can promote ventricular rhythm disturbances even in the absence of hypertrophy or fibrosis. Thus, these mutations must enhance abnormal electrophysiological events via alternative means. In this issue of the JCI, Baudenbacher et al. report a novel mechanism to explain this puzzle (see the related article beginning on page 3893). They show that a selected TnT mutation in the adult mouse heart can markedly increase the sensitivity of cardiac muscle myofilaments to Ca2+ and enhance the susceptibility to arrhythmia, even in the absence of anatomical deformities. As these same mutations can cause some forms of arrhythmias in humans, these findings are of both basic and translational significance. Topics: Actin Cytoskeleton; Action Potentials; Animals; Calcium; Cardiomyopathy, Hypertrophic; Cardiotonic Agents; Cats; Death, Sudden, Cardiac; Disease Models, Animal; Disease Susceptibility; Female; Fibrosis; Heterocyclic Compounds, 4 or More Rings; Humans; Male; Mice; Mice, Mutant Strains; Quinolines; Risk Factors; Tachycardia, Ventricular; Thiadiazines; Troponin T | 2008 |
Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice.
In human cardiomyopathy, anatomical abnormalities such as hypertrophy and fibrosis contribute to the risk of ventricular arrhythmias and sudden death. Here we have shown that increased myofilament Ca2+ sensitivity, also a common feature in both inherited and acquired human cardiomyopathies, created arrhythmia susceptibility in mice, even in the absence of anatomical abnormalities. In mice expressing troponin T mutants that cause hypertrophic cardiomyopathy in humans, the risk of developing ventricular tachycardia was directly proportional to the degree of Ca2+ sensitization caused by the troponin T mutation. Arrhythmia susceptibility was reproduced with the Ca2+-sensitizing agent EMD 57033 and prevented by myofilament Ca2+ desensitization with blebbistatin. Ca2+ sensitization markedly changed the shape of ventricular action potentials, resulting in shorter effective refractory periods, greater beat-to-beat variability of action potential durations, and increased dispersion of ventricular conduction velocities at fast heart rates. Together these effects created an arrhythmogenic substrate. Thus, myofilament Ca2+ sensitization represents a heretofore unrecognized arrhythmia mechanism. The protective effect of blebbistatin provides what we believe to be the first direct evidence that reduction of Ca2+ sensitivity in myofilaments is antiarrhythmic and might be beneficial to individuals with hypertrophic cardiomyopathy. Topics: Actin Cytoskeleton; Action Potentials; Animals; Calcium; Cardiomyopathy, Hypertrophic; Cardiotonic Agents; Cats; Death, Sudden, Cardiac; Disease Models, Animal; Disease Susceptibility; Female; Fibrosis; Heterocyclic Compounds, 4 or More Rings; Humans; Male; Mice; Mice, Mutant Strains; Quinolines; Risk Factors; Tachycardia, Ventricular; Thiadiazines; Troponin T | 2008 |