bix-01294 and Hematologic-Neoplasms

bix-01294 has been researched along with Hematologic-Neoplasms* in 2 studies

Reviews

1 review(s) available for bix-01294 and Hematologic-Neoplasms

ArticleYear
Targeting Enhancer of Zeste Homolog 2 for the Treatment of Hematological Malignancies and Solid Tumors: Candidate Structure-Activity Relationships Insights and Evolution Prospects.
    Journal of medicinal chemistry, 2022, 05-26, Volume: 65, Issue:10

    Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that can change the expression of downstream target genes by catalyzing the trimethylation of lysine 27 of histone H3 (H3K27me3). Studies have found that EZH2 is highly expressed in a variety of tumor tissues and is closely related to the occurrence, development, invasion, and metastasis of tumors; therefore, EZH2 is becoming a new molecular target in antitumor therapy. Tazemetostat (EPZ-6438) was approved in 2020 as the first inhibitor targeting catalytic EZH2 for the treatment of epithelioid sarcoma. In addition, a variety of EZH2 inhibitors are being investigated in basic and clinical research for the treatment of tumors, and encouraging results have been obtained. This article systematically reviews the research progress on EZH2 inhibitors and proteolysis targeting chimera (PROTAC)-based EZH2 degradation agents with a focus on their design strategies, structure-activity relationships (SARs), and safety and clinical manifestations.

    Topics: Animals; Enhancer of Zeste Homolog 2 Protein; Enzyme Inhibitors; Hematologic Neoplasms; Histone Methyltransferases; Humans; Molecular Targeted Therapy; Neoplasms; Structure-Activity Relationship

2022

Other Studies

1 other study(ies) available for bix-01294 and Hematologic-Neoplasms

ArticleYear
Synthesis and antiproliferative activity of α-branched α,β-unsaturated ketones in human hematological and solid cancer cell lines.
    European journal of medicinal chemistry, 2015, Jun-15, Volume: 98

    A series of α-branched α,β-unsaturated ketones were prepared via boron trifluoride etherate mediated reaction between arylalkynes and carboxaldehydes. The evaluation of the antiproliferative activity over hematological (NB4) and solid cancer (A549, MCF-7) cell lines provided a structure-activity relationship. 5-Parameter QSAR equations were built which were able to explain 80%-92% of the variance in activity. The resulting selective lead compound showed IC50 value 0.6 μM against the hematological cell line and did not cause apoptosis, but blocked cell cycle in G0/G1. Moreover, it was demonstrated that this compound enhances and accelerates retinoic acid induced granulocytic differentiation.

    Topics: Cell Line, Tumor; Cell Proliferation; Hematologic Neoplasms; Humans; Ketones; Neoplasms; Quantitative Structure-Activity Relationship

2015