bisdemethoxycurcumin and Disease-Models--Animal

bisdemethoxycurcumin has been researched along with Disease-Models--Animal* in 8 studies

Other Studies

8 other study(ies) available for bisdemethoxycurcumin and Disease-Models--Animal

ArticleYear
Bisdemethoxycurcumin alleviates vandetanib-induced cutaneous toxicity in vivo and in vitro through autophagy activation.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2021, Volume: 144

    High incidence of cutaneous toxicity ranging from 29.2% to 71.2% has been reported during clinical use of vandetanib, which is a multi-target kinase inhibitor indicated for the treatment of unresectable medullary thyroid carcinoma. The cutaneous toxicity of vandetanib has limited its clinical benefits, but the underlying mechanisms and protective strategies are not well studied. Hence, we firstly established an in vivo model by continuously administrating vandetanib at 55 mg/kg/day to C57BL/6 for 21 days and verified that vandetanib could induce skin rash in vivo, which was consistent with the clinical study. We further cultured HaCaT and NHEK cells, the immortalized or primary human keratinocyte line, and investigated vandetanib (0-10 μM, 0-24 h)-caused alteration in cellular survival and death processes. The western blot showed that the expression level of apoptotic-related protein, c-PARP, c-Caspase 3 and Bax were increased, while the anti-apoptotic protein Bcl2 and MCL1 level were decreased. Meanwhile, vandetanib downregulated mitochondrial membrane potential which in turn caused the release of Cytochrome C, excessive production of reactive oxygen species and DNA damage. Furthermore, we found that 5 μM bisdemethoxycurcumin partially rescued vandetanib-induced mitochondria pathway-dependent keratinocyte apoptosis via activation of autophagy in vivo and in vitro, thereby ameliorated cutaneous toxicity. Conclusively, our study revealed the mechanisms of vandetanib-induced apoptosis in keratinocytes during the occurrence of cutaneous toxicity, and suggested bisdemethoxycurcumin as a potential protective drug. This work provided a potentially promising therapeutic strategy for the treatment of vandetanib-induced cutaneous toxicity.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Diarylheptanoids; Disease Models, Animal; DNA Damage; HaCaT Cells; Humans; Keratinocytes; Membrane Potential, Mitochondrial; Mice, Inbred C57BL; Mitochondria; Piperidines; Protein Kinase Inhibitors; Quinazolines; Reactive Oxygen Species; Skin; Skin Diseases

2021
Effective Nephroprotection Against Acute Kidney Injury with a Star-Shaped Polyglutamate-Curcuminoid Conjugate.
    Scientific reports, 2020, 02-06, Volume: 10, Issue:1

    The lack of effective pharmacological treatments for acute kidney injury (AKI) remains a significant public health problem. Given the involvement of apoptosis and regulated necrosis in the initiation and progression of AKI, the inhibition of cell death may contribute to AKI prevention/recovery. Curcuminoids are a family of plant polyphenols that exhibit attractive biological properties that make them potentially suitable for AKI treatment. Now, in cultured tubular cells, we demonstrated that a crosslinked self-assembled star-shaped polyglutamate (PGA) conjugate of bisdemethoxycurcumin (St-PGA-CL-BDMC) inhibits apoptosis and necroptosis induced by Tweak/TNFα/IFNγ alone or concomitant to caspase inhibition. St-PGA-CL-BDMC also reduced NF-κB activation and subsequent gene transcription. In vivo, St-PGA-CL-BDMC prevented renal cell loss and preserved renal function in mice with folic acid-induced AKI. Mechanistically, St-PGA-CL-BDMC inhibited AKI-induced apoptosis and expression of ferroptosis markers and also decreased the kidney expression of genes involved in tubular damage and inflammation, while preserving the kidney expression of the protective factor, Klotho. Thus, due to renal accumulation and attractive pharmacological properties, the application of PGA-based therapeutics may improve nephroprotective properties of current AKI treatments.

    Topics: Acute Kidney Injury; Animals; Apoptosis; Cell Line; Diarylheptanoids; Disease Models, Animal; Drug Evaluation, Preclinical; Female; Folic Acid; Glucuronidase; Humans; Kidney Tubules; Klotho Proteins; Mice; Molecular Conformation; Necrosis; NF-kappa B; Polyglutamic Acid; Protective Agents; Signal Transduction; Structure-Activity Relationship; Transcription, Genetic

2020
Bisdemethoxycurcumin inhibits oxidative stress and antagonizes Alzheimer's disease by up-regulating SIRT1.
    Brain and behavior, 2020, Volume: 10, Issue:7

    Alzheimer's disease (AD) is a progressive neurodegenerative disease. It can lead to progressive cognitive impairment, memory loss, and behavioral alterations. So far, the exact cellular and molecular mechanisms underlying this disorder remain unclear. And there are no effective treatments to prevent, halt, or reverse AD. In recent years, Chinese traditional medicine has become a new force in the treatment of AD, and the typical representatives of natural herbal ingredients are curcumin and its derivatives. Bisdemethoxycurcumin (BDMC), which is a classical derivative of curcumin, was found to have neuroprotective effects against a cell model of Alzheimer's disease (AD) in our previous studies. This study investigated the intrinsic mechanism of BDMC against AD in animal models.. In this study, BDMC was injected into the lateral ventricles of normal C57BL/6 mice, APP/PS mice, and APP/PS mice treated with EX527 (the inhibitor of SIRT1). Y maze and Morris water maze were used to test the learning and memory ability of mice. Nissl staining was used to observe the morphological changes of neurons. Immunofluorescence staining was used to detect Aβ deposition in mice. The activities of GSH and SOD were determined to observe the levels of oxidative stress in mice. And Western blot analyses were used to detect content of SIRT1 in mice.. In the APP/PS mice, after BDMC intervention, their cognitive function improved, oxidative stress adjusted, the number of neurons increased, Aβ deposition decreased, and the level of SIRT1 expression increased. However, when SIRT1 is inhibited, BDMC on the improvement in the learning and memory ability and the improvement on oxidative stress in APP/PS1 mice were reversed.. Our findings demonstrated that in the AD mice, BDMC has antagonistic effect on AD. And an intermediate step in the antagonism effect is caused by SIRT1 upregulation, which leading to decreased oxidative stress. Based on these, we concluded that BDMC injection into the lateral ventricle can act against AD by upregulating SIRT1 to antioxidative stress.

    Topics: Alzheimer Disease; Animals; Diarylheptanoids; Disease Models, Animal; Female; Male; Maze Learning; Memory; Mice; Mice, Inbred C57BL; Mice, Transgenic; Oxidative Stress; Sirtuin 1

2020
Bisdemethoxycurcumin protects against renal fibrosis via activation of fibroblast apoptosis.
    European journal of pharmacology, 2019, Mar-15, Volume: 847

    Renal fibrosis is the common final outcome of nearly all progressive chronic kidney diseases (CKD) that eventually develop into end-stage renal failure, which threatens the lives of patients. Currently, there are no effective drugs for the treatment of renal fibrosis. However, studies have shown that certain plant natural products have a fibrosis-alleviating effect. Thus, we have screened a large number of natural products for their ability to protect against renal fibrosis and found that bisdemethoxycurcumin has a good therapeutic effect in renal fibrosis according to the data obtained in a mouse model of unilateral ureteral obstruction (UUO). The results indicate that bisdemethoxycurcumin can efficiently attenuate renal fibrosis induced by UUO. Additional studies of the bisdemethoxycurcumin mechanism of action in the treatment of renal fibrosis demonstrated that the therapeutic effect of bisdemethoxycurcumin is mediated by the specific induction of fibroblast apoptosis at a concentration of 20 μM. bisdemethoxycurcumin can efficiently protect against renal fibrosis both in vitro and in vivo. This discovery will provide new ideas for renal fibrosis treatment in clinics and a new direction for the development of effective drug therapy of renal fibrosis.

    Topics: Animals; Apoptosis; Biological Products; Cell Line; Curcumin; Diarylheptanoids; Disease Models, Animal; Female; Fibroblasts; Fibrosis; Humans; Kidney; Male; Mice; Protective Agents; Renal Insufficiency, Chronic; Ureteral Obstruction; Urinary Tract

2019
Curcuminoids block TGF-β signaling in human breast cancer cells and limit osteolysis in a murine model of breast cancer bone metastasis.
    Journal of natural products, 2013, Mar-22, Volume: 76, Issue:3

    Effects of curcuminoids on breast cancer cell secretion of the bone-resorptive peptide parathyroid hormone-related protein (PTHrP) and on lytic breast cancer bone metastasis were evaluated. In vitro, transforming growth factor (TGF)-β-stimulated PTHrP secretion was inhibited by curcuminoids (IC50 = 24 μM) in MDA-MB-231 human breast cancer cells independent of effects on cell growth inhibition. Effects on TGF-β signaling revealed decreases in phospho-Smad2/3 and Ets-1 protein levels with no effect on p-38 MAPK-mediated TGF-β signaling. In vivo, mice were inoculated with MDA-MB-231 cells into the left cardiac ventricle and treated ip every other day with curcuminoids (25 or 50 mg/kg) for 21 days. Osteolytic bone lesion area was reduced up to 51% (p < 0.01). Consistent with specific effects on bone osteolysis, osteoclast number at the bone-tumor interface was reduced up to 53% (p < 0.05), while tumor area within bone was unaltered. In a separate study, tumor mass in orthotopic mammary xenografts was also unaltered by treatment. These data suggest that curcuminoids prevent TGF-β induction of PTHrP and reduce osteolytic bone destruction by blockade of Smad signaling in breast cancer cells.

    Topics: Animals; Bone Neoplasms; Breast Neoplasms; Curcumin; Disease Models, Animal; Female; Humans; Mice; Molecular Structure; Osteolysis; Parathyroid Hormone-Related Protein; Signal Transduction; Transforming Growth Factor beta

2013
Curcuminoids-loaded liposomes in combination with arteether protects against Plasmodium berghei infection in mice.
    Experimental parasitology, 2012, Volume: 131, Issue:3

    Curcuminoids are poorly water-soluble compounds with promising antimalarial activity. To overcome some of the drawbacks of curcuminoids, we explored the potential of liposomes for the intravenous delivery of curcuminoids in a model of mouse malaria. The curcuminoids-loaded liposomes were formulated from phosphatidylcholine (soy PC) by the thin-film hydration method. Antimalarial activity of curcuminoids-loaded liposomes alone and in combination with α/β arteether when administered intravenously, was evaluated in Plasmodium berghei infected mice. Animals treated with curcuminoids-loaded liposomes showed lower parasitemia and higher survival when compared to control group (no treatment). Importantly, the combination therapy of curcuminoids-loaded liposomes (40 mg/kg body wt) along with α/β arteether (30 mg/kg body wt) was able to not only cure infected mice but also prevented recrudescence. These data suggest that curcuminoids-loaded liposomes may show promise as a formulation for anti-malarial therapy.

    Topics: Animals; Antimalarials; Artemisinins; Curcuma; Curcumin; Diarylheptanoids; Disease Models, Animal; Hemolysis; Humans; Liposomes; Malaria; Mice; Phytotherapy; Plant Extracts; Plant Roots; Plasmodium berghei; Polyphenols

2012
Comparative antiulcer effect of bisdemethoxycurcumin and curcumin in a gastric ulcer model system.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2009, Volume: 16, Issue:4

    The antiulcer effect of bisdemethoxycurcumin, a yellow pigment found mainly in rhizomes of Curcuma longa, was compared with curcumin in gastric ulcer model systems to validate its clinical application as a remedy for peptic ulcer. Western blot analysis of mouse macrophage cell line RAW 264.7 activated with lipopolysaccharide showed that bisdemethoxycurcumin inhibited inducible nitric oxide synthase (iNOS) production significantly but had no effect on tumor necrosis factor-alpha (TNF-alpha) production, whereas curcumin showed stronger suppression of iNOS protein production and inhibited TNF-alpha protein production significantly. However, bisdemethoxycurcumin and curcumin possessed similar potency in scavenging nitric oxide generated from mouse macrophage cell line RAW 264.7. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed that both curcuminoids inhibited the induction of iNOS dose-dependently at the transcriptional level and curcumin also appeared to inhibit the induction of TNF-alpha at post-transcriptional level. In an animal model, intraduodenal administration of bisdemethoxycurcumin (5-80 mg/kg body wt.) showed a strong inhibitory effect on gastric acid secretion in pylorus-ligated rats whereas curcumin (5-20 mg/kg body wt.) showed a less inhibitory effect, with maximum potency at a dose of 20mg/kg body wt. Moreover, oral administration of bisdemethoxycurcumin at doses of 20-80 mg/kg body wt. twice daily for 10 days showed a significant curative efficacy in accelerating the healing of acetic acid-induced chronic gastric ulcer and promotion of mucosal regeneration in the ulcerated portion in a dose-related manner with potency equal to curcumin. In contrast, the curative potency of curcumin tended to decrease at doses over 160 mg/kg body wt./day. Western blot analysis in ulcerated gastric mucosa showed that bisdemethoxycurcumin dose-dependently reduced the increased protein expression level of iNOS but not TNF-alpha. These results indicated that bisdemethoxycurcumin directly accelerates gastric ulcer healing with potency equal to curcumin. Its antiulcer effect might be due to its properties of decreasing gastric acid secretion and enhancing the mucosal defensive mechanism through suppression of iNOS-mediated inflammation.

    Topics: Animals; Anti-Ulcer Agents; Cell Line; Curcuma; Curcumin; Diarylheptanoids; Disease Models, Animal; Gastric Acid; Gastric Mucosa; Lipopolysaccharides; Macrophages; Male; Mice; Nitric Oxide; Nitric Oxide Synthase Type II; Phytotherapy; Plant Preparations; Rats; Rats, Wistar; Rhizome; RNA, Messenger; Stomach Ulcer; Tumor Necrosis Factor-alpha

2009
Comparison of suppressive effects of demethoxycurcumin and bisdemethoxycurcumin on expressions of inflammatory mediators in vitro and in vivo.
    Archives of pharmacal research, 2008, Volume: 31, Issue:4

    Demethoxycurcumin and bisdemethoxycurcumin are the main active ingredients isolated from Curcumae Longae Radix. Recent studies demonstrated that both compounds exhibit antioxidative and anti-inflammatory effects as well as effects on cancer cell lines. In this study, we compared the activities of demethoxycurcumin and bisdemethoxycurcumin, and both compounds were evaluated on lipopolysaccharide (LPS)-induced nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), cycloxygenase-2 (COX-2) and nuclear factor-kappaB (NF-kappaB) activity in a RAW 264.7 macrophage cell line. The evaluation:results suggested that the anti-inflammatory properties of demethoxycurcumin and bisdemethoxycurcumin were attributed to the inhibition of iNOS and COX-2 expression, as initiated by the inhibition of NF-kappaB activity. Additionally, both of them significantly inhibited carrageenan-induced paw edema in mice. Taken together, all of the results showed that the suppressive effect of demethoxycurcumin was stronger than that of bisdemethoxycurcumin, indicating that the methoxy group had enhanced demethoxycurcumin's anti-inflammation effects.

    Topics: Animals; Anti-Inflammatory Agents; Carrageenan; Cell Line; Curcumin; Cyclooxygenase 2; Diarylheptanoids; Disease Models, Animal; Dose-Response Relationship, Drug; Edema; Gene Expression Regulation, Enzymologic; I-kappa B Proteins; Inflammation Mediators; Lipopolysaccharides; Macrophages; Mice; NF-kappa B; NF-KappaB Inhibitor alpha; Nitric Oxide; Nitric Oxide Synthase Type II; Phosphorylation; Transfection

2008