bisdemethoxycurcumin and Colonic-Neoplasms

bisdemethoxycurcumin has been researched along with Colonic-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for bisdemethoxycurcumin and Colonic-Neoplasms

ArticleYear
Natural derivatives of curcumin attenuate the Wnt/beta-catenin pathway through down-regulation of the transcriptional coactivator p300.
    Biochemical and biophysical research communications, 2008, Dec-26, Volume: 377, Issue:4

    Curcumin, a component of turmeric (Curcuma longa), has been reported to suppress beta-catenin response transcription (CRT), which is aberrantly activated in colorectal cancer. However, the effects of its natural analogs (demethoxycurcumin [DMC] and bisdemethoxycurcumin [BDMC]) and metabolite (tetrahydrocurcumin [THC]) on the Wnt/beta-catenin pathway have not been investigated. Here, we show that DMC and BDMC suppressed CRT that was activated by Wnt3a conditioned-medium (Wnt3a-CM) without altering the level of intracellular beta-catenin, and inhibited the growth of various colon cancer cells, with comparable potency to curcumin. Additionally, DMC and BDMC down-regulated p300, which is a positive regulator of the Wnt/beta-catenin pathway. Notably, THC also inhibited CRT and cell proliferation, but to a much lesser degree than curcumin, DMC, or BDMC, indicating that the conjugated bonds in the central seven-carbon chain of curcuminoids are essential for the inhibition of Wnt/beta-catenin pathway and the anti-proliferative activity of curcuminoids. Thus, our findings suggest that curcumin derivatives inhibit the Wnt/beta-catenin pathway by decreasing the amount of the transcriptional coactivator p300.

    Topics: Antineoplastic Agents; beta Catenin; Cell Line; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; Curcumin; Diarylheptanoids; Down-Regulation; Humans; p300-CBP Transcription Factors; Wnt Proteins

2008
Bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione (a curcumin analog) ameliorates DMH-induced hepatic oxidative stress during colon carcinogenesis.
    Pharmacological research, 2002, Volume: 46, Issue:1

    The protective effect of a curcumin analog [bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione] was investigated on hepatic lipid peroxidation (LPO) and antioxidant status during 1,2-dimethylhydrazine-induced colon carcinogenesis in male Wistar rats. The effects were compared with that of curcumin, a known antioxidant and anticarcinogen. Colon cancer was induced by sub-cutaneous injection of DMH at a dosage of 20mg/kg body weight (15 doses, at 1-week intervals). DMH administered rats developed gross tumours in the colon. Enhanced lipid peroxidation in the liver of colon tumour bearing rats was accompanied by a significant decrease in the activities of glutathione peroxidase (GPx), glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT). Intragastric administration of curcumin (80mg/kg body weight) and curcumin analog (80mg/kg body weight) to DMH-injected rats significantly reduced the number and size of tumour in the colon, lowered lipid peroxidation and enhanced the activities of GPx, GST, SOD and CAT in the liver. We speculate that the curcumin analog used in the present study exerts chemoprevention against cancer development at extrahepatic sites by modulating hepatic biotransformation enzymes and antioxidant status. The effect is comparable with that of curcumin. This shows that the hydroxyl group in the aromatic ring is responsible for the protective effect rather than the methoxy group.

    Topics: 1,2-Dimethylhydrazine; Animals; Carcinogens; Colonic Neoplasms; Curcumin; Diarylheptanoids; Liver; Male; Oxidative Stress; Rats; Rats, Wistar

2002