bisacurone has been researched along with Inflammation* in 2 studies
1 review(s) available for bisacurone and Inflammation
Article | Year |
---|---|
Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric.
Turmeric, a dried powder derived from the rhizome of Curcuma longa, has been used for centuries in certain parts of the world and has been linked to numerous biological activities including antioxidant, anti-inflammatory, anticancer, antigrowth, anti-arthritic, anti-atherosclerotic, antidepressant, anti-aging, antidiabetic, antimicrobial, wound healing, and memory-enhancing activities. One component of turmeric is curcumin, which has been extensively studied, as indicated by more than 5600 citations, most of which have appeared within the past decade. Recent research has identified numerous chemical entities from turmeric other than curcumin. It is unclear whether all of the activities ascribed to turmeric are due to curcumin or whether other compounds in turmeric can manifest these activities uniquely, additively, or synergistically with curcumin. However, studies have indicated that turmeric oil, present in turmeric, can enhance the bioavailability of curcumin. Studies over the past decade have indicated that curcumin-free turmeric (CFT) components possess numerous biological activities including anti-inflammatory, anticancer, and antidiabetic activities. Elemene derived from turmeric is approved in China for the treatment of cancer. The current review focuses on the anticancer and anti-inflammatory activities exhibited by CFT and by some individual components of turmeric, including turmerin, turmerone, elemene, furanodiene, curdione, bisacurone, cyclocurcumin, calebin A, and germacrone. Topics: Animals; Anti-Inflammatory Agents; Antineoplastic Agents; Antioxidants; Clinical Trials as Topic; Curcuma; Curcumin; Cyclohexanols; Disease Models, Animal; Furans; Heterocyclic Compounds, 2-Ring; Humans; Hypoglycemic Agents; Inflammation; Neoplasms; Sesquiterpenes; Sesquiterpenes, Germacrane | 2013 |
1 other study(ies) available for bisacurone and Inflammation
Article | Year |
---|---|
Bisacurone inhibits adhesion of inflammatory monocytes or cancer cells to endothelial cells through down-regulation of VCAM-1 expression.
Bisacurone, one of the active compounds of the traditionally used indigenous herb Curcuma longa Linne (Zingiberaceae), has anti-oxidant, anti-inflammatory, and anti-metastatic activities. We studied how the level of vascular cell adhesion molecule-1 (VCAM-1), one of the key molecules in the development of atherosclerosis as well as carcinogenesis and metastasis, might be affected by bisacurone in tumor necrosis factor-alpha (TNF-alpha)-activated human umbilical vein endothelial cells (HUVECs). Bisacurone dose-dependently inhibited TNF-alpha-mediated expression of VCAM-1. It showed significant suppressive effect on ROS generation in response to TNF-alpha stimulation and it blocked nuclear factor-kappa B (NF-kappaB) p65 translocation into the nucleus and phosphorylation of inhibitory factor kappaBalpha (IkappaBalpha). It also inhibited phosphorylation of Akt and PKC, which are upstream in the regulation of VCAM-1 by TNF-alpha. Furthermore, bisacurone decreased U937 monocyte and human oral cancer cell (Hep-2, QLL-I, SCC-15) adhesion to HUVECs stimulated by TNF-alpha, suggesting that it may inhibit the binding of these cells by regulating the expression of critical adhesion molecules by TNF-alpha. Thus, bisacurone may be beneficial in the treatment of inflammatory diseases, such as atherosclerosis, where inflammatory monocytes are involved in their pathology, and, moreover, in the development of tumors. Topics: Anti-Inflammatory Agents, Non-Steroidal; Blotting, Western; Cell Adhesion; Cells, Cultured; Cyclohexanols; Down-Regulation; Endothelial Cells; Extracellular Signal-Regulated MAP Kinases; Genes, Reporter; Humans; Inflammation; Luciferases; Monocytes; Oncogene Protein v-akt; Oxidants; Plant Extracts; Plasmids; Protein Kinase C; Sesquiterpenes; Transfection; Tumor Necrosis Factor-alpha; Vascular Cell Adhesion Molecule-1 | 2008 |