bisabolol has been researched along with Malaria* in 2 studies
2 other study(ies) available for bisabolol and Malaria
Article | Year |
---|---|
The insecticidal activity of essential oil constituents against pyrethroid-resistant Anopheles funestus (Diptera: Culicidae).
Malaria vector control relies on the use of insecticides for indoor residual spraying and long-lasting bed nets. However, insecticide resistance to pyrethroids among others, has escalated. Anopheles funestus, one of the major African malaria vectors, has attained significant levels of resistance to pyrethroids. Overexpressed P450 monooxygenases have been previously identified in pyrethroid resistant An. funestus. The escalating resistance against conventional insecticides signals an urgent need for identification of novel insecticides. Essential oils have gained recognition as promising sources of alternative natural insecticides. This study investigated six essential oil constituents, farnesol, (-)-α-bisabolol, cis-nerolidol, trans-nerolidol, methyleugenol, santalol (α and β isomers) and essential oil of sandalwood, for the adulticidal effects against pyrethroid-resistant An. funestus strain. The susceptibility against these terpenoids were evaluated on both pyrethroid-susceptible and resistant An. funestus. Furthermore, the presence of overexpressed monooxygenases in resistant An. funestus was confirmed. Results showed that both the pyrethroid-susceptible and resistant An. funestus were susceptible to three EOCs; cis-nerolidol, trans-nerolidol and methyleugenol. On the other hand, the pyrethroid-resistant An. funestus survived exposure to both farnesol and (-)-α-bisabolol. This study however does not show any direct association of the overexpressed Anopheles monooxygenases and the efficacy of farnesol and (-)-α-bisabolol. The enhanced activity of these terpenoids against resistant An. funestus that has been pre-exposed to a synergist, piperonyl butoxide, suggests their potential effectiveness in combination with monooxygenase inhibitors. This study proposes that cis-nerolidol, trans-nerolidol and methyleugenol are potential agents for further investigation as novel bioinsecticides against pyrethroid-resistant An. funestus strain. Topics: Animals; Anopheles; Farnesol; Insecticides; Malaria; Mixed Function Oxygenases; Mosquito Control; Mosquito Vectors; Oils, Volatile; Pyrethrins | 2023 |
Bioactivity of select essential oil constituents against life stages of Anopheles arabiensis (Diptera: Culicidae).
Malaria is transmitted by infected female Anopheles mosquitoes, and An. arabiensis is a main malaria vector in arid African countries. Like other anophelines, its life cycle comprises of three aquatic stages; egg, larva, and pupa, followed by a free flying adult stage. Current vector control interventions using synthetic insecticides target these stages using adulticides or less commonly, larvicides. With escalating insecticide resistance against almost all conventional insecticides, identification of agents that simultaneously act at multiple stages of Anopheles life cycle presents a cost-effective opportunity. A further cost-effective approach would be the discovery of such insecticides from natural origin. Interestingly, essential oils present as potential sources of cost-effective and eco-friendly bioinsecticides. This study aimed to identify essential oil constituents (EOCs) with potential toxic effects against multiple stages of An. arabiensis life cycle. Five EOCs were assessed for inhibition of Anopheles egg hatching and ability to kill larvae, pupae and adult mosquitoes of An. arabiensis species. One of these EOCs, namely methyleugenol, exhibited potent Anopheles egg hatchability inhibition with an IC Topics: Animals; Anopheles; Farnesol; Female; Insecticides; Larva; Life Cycle Stages; Malaria; Mosquito Vectors; Oils, Volatile; Propoxur | 2023 |