bisabolol and Facial-Pain

bisabolol has been researched along with Facial-Pain* in 4 studies

Other Studies

4 other study(ies) available for bisabolol and Facial-Pain

ArticleYear
Molecular mechanism underlying orofacial antinociceptive activity of Vanillosmopsis arborea Baker (Asteraceae) essential oil complexed with β-cyclodextrin.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2019, Mar-01, Volume: 55

    Vanillosmopsis arborea Baker has recognized economic value owing to the high content of (-)-α-bisabolol (BISA) in the essential oil of its stem (EOVA). The antinociceptive effect of EVOA has already been demonstrated, and β-cyclodextrin (βCD) is known to improve the analgesic effect of various substances.. Thus, we aimed to evaluate the orofacial antinociceptive effect of a complex containing EOVA-βCD in rodents.. EOVA was obtained by simple hydrodistillation, and the essential oil was complexed with βCD. The animals (n = 6/group) were treated orally with EOVA-βCD (10 or 50 mg/kg), or vehicle (control), and subjected to cutaneous orofacial nociception (formalin, capsaicin, acidic saline or glutamate), corneal (hypertonic saline) or temporomandibular (formalin) tests. The expression of FOS protein was analyzed in the spinal cord. Molecular docking was performed using the 5-HT. The oral administration of EOVA-βCD reduced nociceptive behaviour. Moreover, EOVA-βCD decreased FOS expression. The molecular docking study indicates that BISA interacts with 5-HT3 and M2 receptors, indicating the potential mechanism of action of the tested compound.. Our results indicate that EOVA-βCD possesses orofacial antinociceptive effect, indicating that this complex can be used in analgesic drug development.

    Topics: Analgesics; Animals; Asteraceae; beta-Cyclodextrins; Facial Pain; Male; Monocyclic Sesquiterpenes; Nociception; Oils, Volatile; Plant Extracts; Plant Stems; Rodentia; Sesquiterpenes

2019
(-)-α-Bisabolol reduces nociception and trigeminal central sensitisation in acute orofacial neuropathic pain induced by infraorbital nerve injury.
    Life sciences, 2019, Jun-15, Volume: 227

    Neuropathic orofacial pain conditions represent a challenge to diagnose and treat. Natural substances are promising therapeutic options for the control of pain.. This study aimed to examine whether (-)-α-bisabolol (BISA), a natural terpene, can attenuate nociceptive behaviour and central sensitisation in a rodent model of trigeminal neuropathic pain.. Infraorbital nerve transection (IONX) or sham operation was performed in adult male rats. Head withdrawal thresholds as a measure of facial mechanical sensitivity were tested with von Frey monofilaments applied bilaterally to the facial vibrissal pad pre-operatively (baseline) and then post-operatively before and at 60, 120, 240 and 360 min after administration of vehicle control per oris (p.o.) or BISA (200 mg/kg p.o.) (n = 8/group). Effects of BISA or vehicle on the activity of nociceptive neurons recorded in the medullary dorsal horn (MDH) were tested on post - operative day 8-10. ANOVA followed by post-hoc Bonferroni tested for statistically significant differences (p < 0.05) across study groups and time points.. IONX animals (but not sham or naïve animals) showed post-operative facial mechanical hypersensitivity that was unaffected by vehicle. However, administration of BISA at post-operative day 7 significantly reversed the mechanical hypersensitivity in IONX rats; this effect lasted for at least 6 h. BISA also attenuated IONX-induced central sensitisation of MDH nociceptive neurons, as reflected in reversal of their reduced activation thresholds, increased responses to graded mechanical stimuli and enhanced spontaneous activity.. BISA may attenuate nociceptive behaviour and central sensitisation in a rat model of acute trigeminal neuropathic pain.

    Topics: Animals; Central Nervous System Sensitization; Disease Models, Animal; Facial Nerve Injuries; Facial Pain; Hyperalgesia; Male; Monocyclic Sesquiterpenes; Neuralgia; Nociception; Nociceptors; Prefrontal Cortex; Rats; Rats, Sprague-Dawley; Sesquiterpenes; Trigeminal Nerve; Trigeminal Neuralgia

2019
(-)-α-Bisabolol reduces orofacial nociceptive behavior in rodents.
    Naunyn-Schmiedeberg's archives of pharmacology, 2017, Volume: 390, Issue:2

    The purposes of this study were to evaluate the anti-nociceptive effect of oral and topical administration of (-)-α-bisabolol (BISA) in rodent models of formalin- or cinnamaldehyde-induced orofacial pain and to explore the inhibitory mechanisms involved. Orofacial pain was induced by injecting 1.5% formalin into the upper lip of mice (20 μL) or into the temporomandibular joint (TMJ) of rats (50 μL). In another experiment, orofacial pain was induced with cinnamaldehyde (13.2 μg/lip). Nociceptive behavior was proxied by time (s) spent rubbing the injected area and by the incidence of head flinching. BISA (100, 200, or 400 mg/kg p.o. or 50, 100, or 200 mg/mL topical) or vehicle was administered 60 min before pain induction. The two formulations (lotion and syrup) were compared with regard to efficacy. The effect of BISA remained after incorporation into the formulations, and nociceptive behavior decreased significantly in all tests. The high binding affinity observed for BISA and TRPA1 in the molecular docking study was supported by in vivo experiments in which HC-030031 (a TRPA1 receptor antagonist) attenuated pain in a manner qualitatively and quantitatively similar to that of BISA. Blockers of opioid receptors, NO synthesis, and K

    Topics: Acrolein; Administration, Oral; Administration, Topical; Analgesics; Animals; Behavior, Animal; Binding Sites; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Compounding; Facial Pain; Formaldehyde; Male; Mice; Molecular Docking Simulation; Monocyclic Sesquiterpenes; Nociception; Nociceptive Pain; Protein Binding; Protein Conformation; Rats, Wistar; Sesquiterpenes; Temporomandibular Joint; Transient Receptor Potential Channels; TRPA1 Cation Channel; TRPC Cation Channels

2017
Evidence for the involvement of TNF-α and IL-1β in the antinociceptive and anti-inflammatory activity of Stachys lavandulifolia Vahl. (Lamiaceae) essential oil and (-)-α-bisabolol, its main compound, in mice.
    Journal of ethnopharmacology, 2016, Sep-15, Volume: 191

    Stachys lavandulifolia Vahl (Lamiaceae) is a medicinal plant widely used in Turkey and Iranian folk medicine due to its analgesic and anti-inflammatory properties, but little is known about its essential oil.. We studied the antinociceptive and anti-inflammatory effects of S. lavandulifolia essential oil (EOSl) and (-)-α-bisabolol (BIS), its main compound, in algogen-induced orofacial nociceptive behavior in mice, and assessed the possible involvement of pro-inflammatory cytokines in these profiles.. The GC-FID and GC-MS analysis of EOSl demonstrated the presence of (-)-α-bisabolol (56.4%), bicyclogermacrene (5.3%), δ-cadinene (4.2%) and spathulenol (2.9%) as the main compounds. Male Swiss mice were pretreated with EOSl (25 or 50mg/kg, p.o.), BIS (25 or 50mg/kg, p.o.), morphine (3mg/kg, i.p.) or vehicle (saline 0.9% with two drops of tween 80, 0.2%), before formalin- (20μl, 2%), capsaicin- (20μl, 2.5µg) or glutamate- (20μl, 25Mm) injection into the right upper lip (perinasal area) in mice. The anti-inflammatory profile of EOSl or BIS (50mg/kg) was assessed by the inflammatory response induced by carrageenan (2% in 0.2mL) in mice (pleurisy model).. Our results showed that p.o. treatment with EOSl and BIS displayed significant inhibitory (p<0.05 or p<0.01 or p<0.001) effects in different orofacial pain tests on mice, but BIS proved to be more effective, significantly reducing nociceptive behavior in all tests including both phases of the formalin test. The analgesic effect is not related to any abnormality since EOSl- or BIS-treated mice exhibited no performance alteration in grip strength. Moreover, EOS1 and BIS exhibited a significant anti-inflammatory effect (p<0.001) in the pleurisy model of inflammation, which seems to be related to a significant reduction (p<0.05) of the pro-inflammatory cytokine TNF-α in BIS treatment, and of the pro-inflammatory cytokine IL-1β (p<0.01) in EOS1 treatment.. Our results corroborate the use of S. lavandulifolia in traditional medicine as an analgesic and anti-inflammatory, which seems to be related to (-)-α-Bisabolol, the main compound of EOSl.

    Topics: Analgesics; Animals; Anti-Infective Agents; Capsaicin; Carrageenan; Disease Models, Animal; Dose-Response Relationship, Drug; Facial Pain; Flame Ionization; Formaldehyde; Gas Chromatography-Mass Spectrometry; Glutamic Acid; Interleukin-1beta; Male; Mice; Monocyclic Sesquiterpenes; Nociception; Nociceptive Pain; Oils, Volatile; Phytotherapy; Plant Extracts; Plant Oils; Plants, Medicinal; Pleurisy; Sesquiterpenes; Stachys; Time Factors; Tumor Necrosis Factor-alpha

2016