bis(maltolato)oxovanadium(iv) has been researched along with Insulin-Resistance* in 4 studies
4 other study(ies) available for bis(maltolato)oxovanadium(iv) and Insulin-Resistance
Article | Year |
---|---|
A nonspecific phosphotyrosine phosphatase inhibitor, bis(maltolato)oxovanadium(IV), improves glucose tolerance and prevents diabetes in Zucker diabetic fatty rats.
The molecular basis of insulin resistance, a major risk factor for development of Type II diabetes, involves defective insulin signaling. Insulin-mediated signal transduction is negatively regulated by the phosphotyrosine phosphatase, PTP1B, and numerous studies have demonstrated that organo-vanadium compounds, which are nonselective phosphotyrosine phosphatase inhibitors, have insulin-mimetic properties. However, whether or not vanadium compounds can prevent the transition from insulin resistance to overt diabetes is unknown. We compared the ability of bis(maltolato)oxovanadium(IV) (BMOV), an orally bioavailable organo-vanadium compound, and rosiglitazone maleate (RSG), a known insulin sensitizer, to prevent development of diabetes in Zucker diabetic fatty (ZDF) rats. Treatment began at 6 weeks of age when animals are insulin resistant and hyperinsulinemic, but not yet hyperglycemic, and ended at 12 weeks of age, which is 4 weeks after ZDF rats typically develop overt diabetes. BMOV-treated ZDF rats did not develop hyperglycemia, showed significant improvement in insulin sensitivity, and retained normal pancreatic islet morphology and endocrine cell distribution, similar to RSG-treated animals. BMOV and RSG treatment also prevented the hyper-phagia and polydipsia present in untreated ZDF rats; however, BMOV-treated ZDF rats gained much less weight than did RSG-treated animals. Circulating levels of adiponectin decreased in untreated ZDF rats compared to lean controls, but these levels remained normal in BMOV-treated ZDF rats. In contrast, in RSG-treated ZDF rats, plasma adiponectin levels were nearly 4-fold higher than in lean control rats, primarily as a result of a large increase in the amount of low-molecular weight forms of adiponectin in circulation. These data demonstrate that phosphatase inhibition offers a new approach to diabetes prevention, one that may have advantages over current approaches. Topics: Animals; Blood Glucose; Diabetes Mellitus, Type 2; Dose-Response Relationship, Drug; Enzyme Inhibitors; Glucose Tolerance Test; Hyperinsulinism; Hypoglycemic Agents; Insulin; Insulin Resistance; Obesity; Pancreas; Protein Tyrosine Phosphatases; Pyrones; Rats; Rats, Zucker; Time Factors; Vanadates | 2005 |
The vanadyl (VO2+) chelate bis(acetylacetonato)oxovanadium(IV) potentiates tyrosine phosphorylation of the insulin receptor.
We have compared the insulin-like activity of bis(acetylacetonato)oxovanadium(IV) [VO(acac)2], bis(maltolato)oxovanadium(IV) [VO(malto)2], and bis(1-N-oxide-pyridine-2-thiolato)oxovanadium(IV) [VO(OPT)2] in differentiated 3T3-L1 adipocytes. The insulin-like influence of VO(malto)2 and VO(OPT)2 was decreased compared with that of VO(acac)2. Also, serum albumin enhanced the insulin-like activity of all three chelates more than serum transferrin. Each of the three VO2+ chelates increased the tyrosine phosphorylation of proteins in response to insulin, including the beta-subunit of the insulin receptor (IRbeta) and the insulin receptor substrate-1 (IRS1). However, VO(acac)2 exhibited the greatest synergism with insulin and was therefore further investigated. Treatment of 3T3-L1 adipocytes with 0.25 mM VO(acac)2 in the presence of 0.25 mM serum albumin synergistically increased glycogen accumulation stimulated by 0.1 and 1 nM insulin, and increased the phosphorylation of IRbeta, IRS1, protein kinase B, and glycogen synthase kinase-3beta. Wortmannin suppressed all of these classical insulin-signaling activities exerted by VO(acac)2 or insulin, except for tyrosine phosphorylation of IRbeta and IRS1. Additionally, VO(acac)2 enhanced insulin signaling and metabolic action in insulin-resistant 3T3-L1 adipocytes. Cumulatively, these results provide evidence that VO(acac)2 exerts its insulin-enhancing properties by directly potentiating the tyrosine phosphorylation of the insulin receptor, resulting in the initiation of insulin metabolic signaling cascades in 3T3-L1 adipocytes. Topics: 3T3-L1 Cells; Adipocytes; Animals; Chelating Agents; Enzyme Activation; Glycogen; Glycogen Synthase; Hypoglycemic Agents; Insulin Resistance; Mice; Molecular Structure; Organometallic Compounds; Phosphorylation; Pyrones; Receptor, Insulin; Solutions; Tyrosine; Vanadates | 2005 |
Effects of bis(maltolato)oxovanadium(IV) are distinct from food restriction in STZ-diabetic rats.
In association with the insulin-mimetic properties, vanadium and related compounds have been shown to normalize hyperphagia associated with diabetes mellitus. The objective of this study was to clarify the effects of an organic vanadium compound, bis(maltolato)oxovanadium(IV) (BMOV), vs. food restriction on the metabolic abnormalities that occur in diabetes. BMOV was administered daily in drinking water to streptozotocin (STZ)-diabetic rats for 6 wk. Pair-fed groups were fed based on the intake for their respective counterparts from the previous day. Plasma parameters were measured weekly after a carefully controlled 5-h fasting period. BMOV reduced plasma glucose (diabetic = 31.2 +/- 1.9, diabetic treated = 10.2 +/- 1.8, and diabetic pair fed = 34.2 +/- 1.1 mM), triglyceride, and cholesterol levels to normal without a concomitant increase in plasma insulin levels. There was no body weight gain in the diabetic pair-fed group compared with all other groups. BMOV but not pair feeding was effective in preventing the decreased cardiac function observed in STZ-diabetic rats. These data suggest that the glucose-lowering properties of BMOV are independent of the effects of dietary restriction and reinforce the efficacy of BMOV as an effective antihyperglycemic agent. Topics: Animals; Blood Glucose; Blood Urea Nitrogen; Cholesterol; Diabetes Mellitus, Experimental; Food Deprivation; Hypoglycemic Agents; Insulin; Insulin Resistance; Male; Pyrones; Rats; Rats, Wistar; Triglycerides; Vanadates | 1997 |
Skeletal muscle mitogen-activated protein kinases and ribosomal S6 kinases. Suppression in chronic diabetic rats and reversal by vanadium.
The mitogen-activated protein (MAP) kinases and ribosomal S6 protein kinases in the skeletal muscle of insulin-resistant long-term (2 and 6 months' duration) diabetic rats were investigated to understand further the changes in insulin intracellular signaling pathways that accompany diabetes. The effects of insulin-mimetic vanadium compounds on the activity of these kinases were also examined. In the insulin-resistant 2-month diabetic rats, the basal activities of MAP kinases were relatively unchanged, while the basal activities of S6 kinases were significantly increased. Intravenous injection of insulin moderately activated both the 42-kDa MAP kinase (p42mapk) and a 44-kDa MAP kinase (p44erk1) in the 2-month control rats but not in the 2-month diabetic rats. Insulin treatment markedly stimulated the activity of a novel 31-kDa S6 kinase and the previously described 90-kDa ribosomal S6 kinase encoded by one of the rsk genes (p90rsk) in the 2-month control rats, while the effect was substantially reduced in the diabetic rats. In the 6-month diabetic rats, the basal phosphotransferase activities of both MAP kinases were depressed threefold or greater. This correlated with reductions in the amount of immunoreactive p42mapk and p44erk1 proteins in extracts from the diabetic rats. The basal activity of the 31-kDa S6 kinase activity was also reduced fourfold in the 6-month diabetic rats. Treatment of the 2-month diabetic rats with vanadyl sulfate resulted in euglycemia, prevented the increase in the basal activity of S6 kinase, and improved the activation of S6 kinase by insulin.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Calcium-Calmodulin-Dependent Protein Kinases; Chromatography, Ion Exchange; Diabetes Mellitus, Experimental; Hypoglycemic Agents; Insulin; Insulin Resistance; Kinetics; Muscle, Skeletal; Protein Serine-Threonine Kinases; Pyrones; Rats; Rats, Wistar; Reference Values; Ribosomal Protein S6 Kinases; Ribosomes; Time Factors; Vanadates; Vanadium; Vanadium Compounds | 1995 |