bis(3-5-dibromosalicyl)fumarate has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for bis(3-5-dibromosalicyl)fumarate and Disease-Models--Animal
Article | Year |
---|---|
Chemically modified porcine hemoglobins and their biological properties.
Hemoglobin cross-linked with small molecular modifiers turns out to be more stable. Modifications of proteins with polyethylene glycol (PEG) have been proven to enlarge the molecular size of proteins, to prolong their retention time in the circulation as well as blunt immune reactions. In the present study, the optimal conditions for porcine hemoglobin (pHb) modification with bis (3, 5-dibromosalicyl) fumarate (DBBF) and PEG were evaluated. The derivative of DBBF cross-linked pHb (DBBF-pHb) showed improved oxygen affinity and the ability to resist the dissociation of the alpha2beta2 tetramer compared with the natural protein. DBBF-pHb was then bound to the activated PEG. The results indicated that the pHb modified with DBBF and PEG had more stable tetrameric conformation with a molecular weight of 107000. Their oxygen half-saturation pressure (P50) is around 3.33 kPa, which approximates the physiological P50 of human red blood cells. Both routine and reinforced immunizing methods were adopted to study the immunogenicity of modified products and the results showed that the products had very low immunogenicity evaluated by enzyme-linked immunoadsordent assay (ELISA). Somewhat beneficial effects were shown in the treatment of hemorrhagic shock where modified hemoglobin solutions were used as resuscitation fluids in the hemorrhagic shock Sprague-Dawley (SD) rats model. Topics: Allosteric Regulation; Animals; Aspirin; Blood Substitutes; Cross-Linking Reagents; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Hemoglobins; Hydrogen-Ion Concentration; Male; Molecular Weight; Oxygen; Polyethylene Glycols; Prohibitins; Rats; Rats, Sprague-Dawley; Shock, Hemorrhagic; Swine | 2004 |
Focal cerebral ischemia in rats: effect of hemodilution with alpha-alpha cross-linked hemoglobin on CBF.
Hemodilution has had limited success as a treatment of cerebral ischemia. When using a nonoxygen binding fluid, the therapeutic efficacy of hemodilution-induced increases in CBF are offset by concomitant decreases in oxygen content. The effect of hemodilution, with diaspirin alpha-alpha cross-linked hemoglobin (DCLHb), on CBF during middle cerebral artery occlusion was assessed. Rats were hemodiluted to one of the following hematocrits (Hct): (a) 44/Hct, (b) 37/Hct, (c) 30/Hct, (d) 23/Hct, (e) 16/Hct, or (f) 9/Hct. After 10 min of ischemia, CBF was determined with 14C-iodoantipyrine. Coronal brain sections were evaluated for areas with a CBF of 0-10 and 11-20 ml 100 g-1 min-1. In addition, oxygen delivery was calculated. In the center of the ischemic zone, both areas of low CBF were less in the 30/Hct, 23/Hct, and 16/Hct groups compared with the 44/Hct and 37/Hct groups; and both areas were less in the 9/Hct group compared with the other five groups (p < 0.05). For the hemisphere contralateral to occlusion, there was a direct correlation between hematocrit and oxygen delivery. However, for the hemisphere ipsilateral to occlusion, oxygen delivery increased as hematocrit decreased (44/Hct, 8.6 +/- 0.3 vs. 9/Hct, 13.6 +/- 0.4 [mean +/- SD, ml 100 g-1 min-1]). The results of this study support a hypothesis that hemodilution with DCLHb decreases the extent of focal cerebral ischemia. Topics: Animals; Aspirin; Brain; Brain Ischemia; Cerebrovascular Circulation; Cross-Linking Reagents; Disease Models, Animal; Dose-Response Relationship, Drug; Hemodilution; Hemoglobins; Male; Rats; Rats, Inbred SHR | 1992 |