bis(3--5-)-cyclic-diguanylic-acid and Chronic-Disease

bis(3--5-)-cyclic-diguanylic-acid has been researched along with Chronic-Disease* in 3 studies

Reviews

1 review(s) available for bis(3--5-)-cyclic-diguanylic-acid and Chronic-Disease

ArticleYear
Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis.
    Future microbiology, 2015, Volume: 10, Issue:2

    Pseudomonas aeruginosa is the most common pathogen that colonizes the lungs of patients with cystic fibrosis. Isolates from sputum are typically all derived from the same strain of bacterium but show extensive phenotypic heterogeneity. One of these variants is the so-called small colony variant, which also shows increased ability to form a biofilm and is frequently resistant to multiple antibiotics. The presence of small colony variants in the sputum of patients with cystic fibrosis is associated with a worse clinical condition. The underlying mechanism responsible for generation of the small colony phenotype remains unclear, but a final common pathway would appear to be elevation of intracellular levels of cyclic di-GMP. This phenotypic variant is thus not just a laboratory curiosity, but a significant bacterial adaptation that favors survival within the lung of patients with cystic fibrosis and contributes to the pulmonary damage caused by P. aeruginosa.

    Topics: Anti-Bacterial Agents; Biofilms; Chronic Disease; Cyclic GMP; Cystic Fibrosis; Drug Resistance, Bacterial; Humans; Lung; Phenotype; Pseudomonas aeruginosa; Pseudomonas Infections

2015

Other Studies

2 other study(ies) available for bis(3--5-)-cyclic-diguanylic-acid and Chronic-Disease

ArticleYear
Tangled bank of experimentally evolved Burkholderia biofilms reflects selection during chronic infections.
    Proceedings of the National Academy of Sciences of the United States of America, 2013, Jan-15, Volume: 110, Issue:3

    How diversity evolves and persists in biofilms is essential for understanding much of microbial life, including the uncertain dynamics of chronic infections. We developed a biofilm model enabling long-term selection for daily adherence to and dispersal from a plastic bead in a test tube. Focusing on a pathogen of the cystic fibrosis lung, Burkholderia cenocepacia, we sequenced clones and metagenomes to unravel the mutations and evolutionary forces responsible for adaptation and diversification of a single biofilm community during 1,050 generations of selection. The mutational patterns revealed recurrent evolution of biofilm specialists from generalist types and multiple adaptive alleles at relatively few loci. Fitness assays also demonstrated strong interference competition among contending mutants that preserved genetic diversity. Metagenomes from five other independently evolved biofilm lineages revealed extraordinary mutational parallelism that outlined common routes of adaptation, a subset of which was found, surprisingly, in a planktonic population. These mutations in turn were surprisingly well represented among mutations that evolved in cystic fibrosis isolates of both Burkholderia and Pseudomonas. These convergent pathways included altered metabolism of cyclic diguanosine monophosphate, polysaccharide production, tricarboxylic acid cycle enzymes, global transcription, and iron scavenging. Evolution in chronic infections therefore may be driven by mutations in relatively few pathways also favored during laboratory selection, creating hope that experimental evolution may illuminate the ecology and selective dynamics of chronic infections and improve treatment strategies.

    Topics: Bacterial Adhesion; Base Sequence; Biofilms; Burkholderia cenocepacia; Burkholderia Infections; Chronic Disease; Cyclic GMP; Cystic Fibrosis; Directed Molecular Evolution; DNA, Bacterial; Ecosystem; Genome, Bacterial; Humans; Lung Diseases; Mannose; Metagenome; Mutation; Opportunistic Infections; Phylogeny; Selection, Genetic

2013
Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model.
    Infection and immunity, 2011, Volume: 79, Issue:8

    Biofilms contribute to Pseudomonas aeruginosa persistence in a variety of diseases, including cystic fibrosis, burn wounds, and chronic suppurative otitis media. However, few studies have directly addressed P. aeruginosa biofilms in vivo. We used a chinchilla model of otitis media, which has previously been used to study persistent Streptococcus pneumoniae and Haemophilus influenzae infections, to show that structures formed in vivo are biofilms of bacterial and host origin within a matrix that includes Psl, a P. aeruginosa biofilm polysaccharide. We evaluated three biofilm and/or virulence mediators of P. aeruginosa known to affect biofilm formation in vitro and pathogenesis in vivo--bis-(3',5')-cyclic dimeric GMP (c-di-GMP), flagella, and quorum sensing--in a chinchilla model. We show that c-di-GMP overproduction has a positive impact on bacterial persistence, while quorum sensing increases virulence. We found no difference in persistence attributed to flagella. We conclude from these studies that a chinchilla otitis media model provides a means to evaluate pathogenic mediators of P. aeruginosa and that in vitro phenotypes should be examined in multiple infection systems to fully understand their role in disease.

    Topics: Animals; Biofilms; Chinchilla; Chronic Disease; Cyclic GMP; Disease Models, Animal; Gene Expression Regulation, Bacterial; Humans; Otitis Media; Pseudomonas aeruginosa; Pseudomonas Infections; Quorum Sensing; Rodent Diseases; Virulence

2011