birinapant has been researched along with Lymphoma--B-Cell* in 1 studies
1 other study(ies) available for birinapant and Lymphoma--B-Cell
Article | Year |
---|---|
Temporal and spatial evolution of therapy-induced tumor apoptosis detected by caspase-3-selective molecular imaging.
Induction of apoptosis in tumors is considered a desired goal of anticancer therapy. We investigated whether the dynamic temporal and spatial evolution of apoptosis in response to cytotoxic and mechanism-based therapeutics could be detected noninvasively by the caspase-3 radiotracer [(18)F]ICMT-11 and positron emission tomography (PET).. The effects of a single dose of the alkylating agent cyclophosphamide (CPA or 4-hydroperoxycyclophosphamide), or the mechanism-based small molecule SMAC mimetic birinapant on caspase-3 activation was assessed in vitro and by [(18)F]ICMT-11-PET in mice bearing 38C13 B-cell lymphoma, HCT116 colon carcinoma, or MDA-MB-231 breast adenocarcinoma tumors. Ex vivo analysis of caspase-3 was compared to the in vivo PET imaging data.. Drug treatment increased the mean [(18)F]ICMT-11 tumor uptake with a peak at 24 hours for CPA (40 mg/kg; AUC40-60: 8.04 ± 1.33 and 16.05 ± 3.35 %ID/mL × min at baseline and 24 hours, respectively) and 6 hours for birinapant (15 mg/kg; AUC40-60: 20.29 ± 0.82 and 31.07 ± 5.66 %ID/mL × min, at baseline and 6 hours, respectively). Voxel-based spatiotemporal analysis of tumor-intrinsic heterogeneity suggested that discrete pockets of caspase-3 activation could be detected by [(18)F]ICMT-11. Increased tumor [(18)F]ICMT-11 uptake was associated with caspase-3 activation measured ex vivo, and early radiotracer uptake predicted apoptosis, distinct from the glucose metabolism with [(18)F]fluorodeoxyglucose-PET, which depicted continuous loss of cell viability.. The proapoptotic effects of CPA and birinapant resulted in a time-dependent increase in [(18)F]ICMT-11 uptake detected by PET. [(18)F]ICMT-11-PET holds promise as a noninvasive pharmacodynamic biomarker of caspase-3-associated apoptosis in tumors. Topics: Animals; Antineoplastic Agents, Alkylating; Apoptosis; Azides; Breast Neoplasms; Caspase 3; Colonic Neoplasms; Cyclophosphamide; Dipeptides; Enzyme Activation; Female; HCT116 Cells; Humans; Indoles; Lymphoma, B-Cell; Mice; Mice, Inbred C3H; Positron-Emission Tomography; Radiopharmaceuticals; Xenograft Model Antitumor Assays | 2013 |