biphalin and Disease-Models--Animal

biphalin has been researched along with Disease-Models--Animal* in 7 studies

Other Studies

7 other study(ies) available for biphalin and Disease-Models--Animal

ArticleYear
Biphalin, a dimeric opioid peptide, reduces neonatal hypoxia-ischemia brain injury in mice by the activation of PI3K/Akt signaling pathway.
    Journal of chemical neuroanatomy, 2021, Volume: 115

    Topics: Animals; Brain; Disease Models, Animal; Enkephalins; Hypoxia-Ischemia, Brain; Mice; Narcotic Antagonists; Neuroprotective Agents; Phosphatidylinositol 3-Kinases; Phosphorylation; Polyethylene Terephthalates; Proto-Oncogene Proteins c-akt; Signal Transduction

2021
Biphalin protects against cognitive deficits in a mouse model of mild traumatic brain injury (mTBI).
    Neuropharmacology, 2016, Volume: 101

    Traumatic brain injury (TBI) is often a result of traffic accidents, contact sports or battlefield explosions. A mild form of traumatic brain injury (mTBI) is frequently underestimated, as the immediate physical symptoms decrease rapidly and conventional neuroimaging studies often do not show visible evidence of brain lesions. However, cognitive impairments persist for weeks, months or even years after the incident. Endogenous opioids were documented to play a role in thmodulation of mTBI pathology, whereas exogenous opioids were shown to possess neuroprotective properties. In the present study, biphalin, a dimeric enkephalin analog, improved cognitive performance in the Morris Water Maze and Novel Object Recognition tests in a mouse weight-drop model of mTBI. The effect of a single systemic injection of 10 mg/kg biphalin immediately after trauma was reversed by naltrexone, suggesting an opioid receptor-mediated mechanism. Biphalin also reduced cortical and hippocampal neurodegeneration, as shown by silver staining. Our data indicates that opioid receptor activation by biphalin may provide neuroprotection of post-traumatic neurodegeneration processes and may protect against memory impairments.

    Topics: Analgesics; Analysis of Variance; Animals; Anxiety; Brain Injuries; Cognition Disorders; Disease Models, Animal; Enkephalins; Exploratory Behavior; Male; Maze Learning; Mice; Mice, Inbred C57BL; Naltrexone; Narcotic Antagonists; Recognition, Psychology; Silver Staining

2016
Mixed MOP/DOP agonist biphalin elicits anti-transit effect in mouse models mimicking diarrhea-predominant irritable bowel syndrome symptoms.
    Pharmacological reports : PR, 2016, Volume: 68, Issue:1

    Opioid receptors play a crucial role in the maintenance of homeostasis in the gastrointestinal (GI) tract. The aim of this study was to characterize the effect of biphalin, a mixed MOP/DOP agonist, on mouse intestinal contractility in vitro and GI motility in vivo and in animal models mimicking symptoms of diarrhea-predominant irritable bowel syndrome (IBS-D).. The effect of biphalin on muscle contractility in vitro was characterized in the ileum and colon. The anti-transit activity of biphalin in vivo was assessed in the following tests: whole gastrointestinal transit, colonic bead expulsion, fecal pellet output and castor oil-induced diarrhea, alone and in the presence of naloxone, and MOP and DOP antagonists.. In vitro, biphalin (10(-10)-10(-6)M) inhibited colonic and ileal smooth muscle contractions in a concentration-dependent, opioid antagonist-reversible manner. In vivo, biphalin at the dose of 5mg/kg ip prolonged the whole GI transit and inhibited colonic bead expulsion. Biphalin reversed hypermotility and exerted anti-diarrheal effect in mouse models mimicking IBS-D symptoms.. Biphalin is an interesting template for novel opioid-based agents to be used in therapy of functional GI diseases.

    Topics: Analgesics, Opioid; Animals; Diarrhea; Disease Models, Animal; Dose-Response Relationship, Drug; Enkephalins; Gastrointestinal Motility; Irritable Bowel Syndrome; Male; Mice; Mice, Inbred BALB C; Organ Culture Techniques; Receptors, Opioid, delta; Receptors, Opioid, mu; Treatment Outcome

2016
Biphalin preferentially recruits peripheral opioid receptors to facilitate analgesia in a mouse model of cancer pain - A comparison with morphine.
    European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 2016, Jun-30, Volume: 89

    The search for new drugs for cancer pain management has been a long-standing goal in basic and clinical research. Classical opioid drugs exert their primary antinociceptive effect upon activating opioid receptors located in the central nervous system. A substantial body of evidence points to the relevance of peripheral opioid receptors as potential targets for cancer pain treatment. Peptides showing limited blood-brain-barrier permeability promote peripheral analgesia in many pain models. In the present study we examined the peripheral and central analgesic effect of intravenously administered biphalin - a dimeric opioid peptide in a mouse skin cancer pain model, developed by an intraplantar inoculation of B16F0 melanoma cells. The effect of biphalin was compared with morphine - a golden standard in cancer pain management. Biphalin produced profound, dose-dependent and naloxone sensitive spinal analgesia. Additionally, the effect in the tumor-bearing paw was largely mediated by peripheral opioid receptors, as it was readily attenuated by the blood-brain-barrier-restricted opioid receptor antagonist - naloxone methiodide. On the contrary, morphine facilitated its analgesic effect primarily by activating spinal opioid receptors. Both drugs induced tolerance in B16F0 - implanted paws after chronic treatment, however biphalin as opposed to morphine, showed little decrease in its activity at the spinal level. Our results indicate that biphalin may be considered a future alternative drug in cancer pain treatment due to an enhanced local analgesic activity as well as lower tolerance liability compared with morphine.

    Topics: Analgesia; Analgesics, Opioid; Animals; Blood-Brain Barrier; Cancer Pain; Cell Line, Tumor; Disease Models, Animal; Drug Tolerance; Enkephalins; Male; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Morphine; Naloxone; Opioid Peptides; Permeability; Quaternary Ammonium Compounds; Receptors, Opioid; Skin Neoplasms

2016
Anti-inflammatory and antinociceptive action of the dimeric enkephalin peptide biphalin in the mouse model of colitis: new potential treatment of abdominal pain associated with inflammatory bowel diseases.
    Peptides, 2014, Volume: 60

    Biphalin, a mixed MOP/DOP agonist, displays a potent antinociceptive activity in numerous animal models of pain. The aim of the study was to characterize the anti-inflammatory and antinociceptive action of biphalin in the mouse models of colitis. The anti-inflammatory effect of biphalin (5mg/kg, twice daily, i.c. and i.p.) was characterized in a semi-chronic mouse model of colitis, induced by i.c. injection of trinitrobenzenesulfonic acid (TNBS). The antinociceptive action of biphalin (5mg/kg, i.p. and i.c.) in inflamed mice was assessed in mustard oil-induced model of visceral pain and in the hot plate test. In the semi-chronic mouse model of colitis, biphalin i.c. (5mg/kg), but not i.p. improved colitis macroscopic score (2.88±0.19 and 4.99±0.80 units for biphalin and vehicle treated animals, respectively). Biphalin injected i.p. and i.c. (5mg/kg) displayed a potent antinociceptive action in the mustard oil-induced pain test. In the hot plate test, biphalin (5mg/kg, i.p.) produced a potent antinociceptive activity in inflamed mice, suggesting central site of action. Our data suggest that biphalin may become a novel opioid-based analgesic agent in IBD therapy and warrant further investigation of its pharmacological profile.

    Topics: Abdominal Pain; Analgesics; Animals; Anti-Inflammatory Agents, Non-Steroidal; Colitis; Disease Models, Animal; Enkephalins; Inflammation; Inflammatory Bowel Diseases; Injections, Intraperitoneal; Injections, Intraventricular; Male; Mice; Mice, Inbred BALB C; Mustard Plant; Plant Oils; Trinitrobenzenesulfonic Acid

2014
The analgesic activity of biphalin and its analog AM 94 in rats.
    European journal of pharmacology, 2012, Jun-15, Volume: 685, Issue:1-3

    Biphalin is an opioid linear octapeptide, which displays a broad affinity for all opioid receptors (μ, δ and κ), as well as exceptionally high antinociceptive activity. AM 94 is a biphalin analog and a selective agonist at μ and δ opioid receptors. This study investigated the antinociceptive profile of AM 94. All antinociception evaluations were made in adult male rats using the hot-plate test. AM 94 proved to induce greater and longer antinociception compared to biphalin following intracebroventricular (1 nmol/kg) and intravenous administration (1200 nmol/kg) as evaluated by % maximum possible effect (M.P.E.), when administered intracerebroventricularly and intravenously and sustained analgesia up to 210 min. The antinociceptive activities of biphalin and AM 94 were antagonized by naloxone (10mg/kg intraperitoneally). Our data suggest that AM 94 could be regarded as a novel pharmacologically active opioid compound for eliciting potent and sustained analgesia after central and peripheral administration.

    Topics: Analgesics; Animals; Disease Models, Animal; Enkephalins; Injections, Intravenous; Injections, Intraventricular; Male; Naloxone; Narcotic Antagonists; Oligopeptides; Pain; Piperazines; Rats; Rats, Wistar; Time Factors

2012
Characterization of neuroprotective effects of biphalin, an opioid receptor agonist, in a model of focal brain ischemia.
    The Journal of pharmacology and experimental therapeutics, 2011, Volume: 339, Issue:2

    Approximately 795,000 people experience a new or recurrent stroke in the United States annually. The purpose of this study was to assess the protective effect of a nonselective opioid receptor agonist, biphalin, in brain edema and infarct damage by using both in vitro and in vivo models of stroke. In an in vivo model of ischemia, biphalin significantly decreased edema (66.6 and 58.3%) and infarct (52.2 and 56.4%) ratios in mouse transient (60-min occlusion/24-h reperfusion) and permanent (6 h) middle cerebral artery occlusion models, respectively. Biphalin administration also showed decreased neurodegeneration in hippocampal, cortical, and striatal brain tissue after ischemia, evidenced by reduced Fluoro-Jade C staining. In addition, biphalin improved neurological function after stroke injury evidenced by neurological score and locomotor activity evaluation. Biphalin significantly decreased penumbral expression of Na(+), K(+), 2Cl(-) cotransporter (NKCC) and the translocation of the conventional isoforms of protein kinase C (PKC). It also reversed the activation of PKC-induced cell volume increase during ischemia in primary neuronal cell cultures exposed to 1 h of oxygen glucose deprivation. These data suggest that opioid receptor activation provides neuroprotection during stroke, and a possible explanation of this mechanism could be the inhibition of NKCC function via the regulation of PKC-dependent cell signaling.

    Topics: Animals; Brain; Brain Edema; Brain Ischemia; Cell Size; Cells, Cultured; Disease Models, Animal; Drug Evaluation, Preclinical; Enkephalins; Hippocampus; Infarction, Middle Cerebral Artery; Male; Mice; Molecular Targeted Therapy; Motor Activity; Nerve Degeneration; Neuroprotective Agents; Protein Kinase C; Receptors, Opioid; Sodium-Potassium-Chloride Symporters; Stroke

2011