biphalin and Cancer-Pain

biphalin has been researched along with Cancer-Pain* in 1 studies

Other Studies

1 other study(ies) available for biphalin and Cancer-Pain

ArticleYear
Biphalin preferentially recruits peripheral opioid receptors to facilitate analgesia in a mouse model of cancer pain - A comparison with morphine.
    European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 2016, Jun-30, Volume: 89

    The search for new drugs for cancer pain management has been a long-standing goal in basic and clinical research. Classical opioid drugs exert their primary antinociceptive effect upon activating opioid receptors located in the central nervous system. A substantial body of evidence points to the relevance of peripheral opioid receptors as potential targets for cancer pain treatment. Peptides showing limited blood-brain-barrier permeability promote peripheral analgesia in many pain models. In the present study we examined the peripheral and central analgesic effect of intravenously administered biphalin - a dimeric opioid peptide in a mouse skin cancer pain model, developed by an intraplantar inoculation of B16F0 melanoma cells. The effect of biphalin was compared with morphine - a golden standard in cancer pain management. Biphalin produced profound, dose-dependent and naloxone sensitive spinal analgesia. Additionally, the effect in the tumor-bearing paw was largely mediated by peripheral opioid receptors, as it was readily attenuated by the blood-brain-barrier-restricted opioid receptor antagonist - naloxone methiodide. On the contrary, morphine facilitated its analgesic effect primarily by activating spinal opioid receptors. Both drugs induced tolerance in B16F0 - implanted paws after chronic treatment, however biphalin as opposed to morphine, showed little decrease in its activity at the spinal level. Our results indicate that biphalin may be considered a future alternative drug in cancer pain treatment due to an enhanced local analgesic activity as well as lower tolerance liability compared with morphine.

    Topics: Analgesia; Analgesics, Opioid; Animals; Blood-Brain Barrier; Cancer Pain; Cell Line, Tumor; Disease Models, Animal; Drug Tolerance; Enkephalins; Male; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Morphine; Naloxone; Opioid Peptides; Permeability; Quaternary Ammonium Compounds; Receptors, Opioid; Skin Neoplasms

2016