bio-1211 has been researched along with Bronchial-Hyperreactivity* in 2 studies
2 other study(ies) available for bio-1211 and Bronchial-Hyperreactivity
Article | Year |
---|---|
A small-molecule, tight-binding inhibitor of the integrin alpha(4)beta(1) blocks antigen-induced airway responses and inflammation in experimental asthma in sheep.
The leukocyte integrin very late antigen-4 (alpha(4)beta(1), CD49d/CD29) is an adhesion receptor that plays an important role in allergic inflammation and contributes to antigen-induced late responses (LAR) and airway hyperresponsiveness (AHR). In this study, we show that single doses of a new small-molecule, tight-binding inhibitor of alpha(4), BIO-1211, whether given by aerosol or intravenously, either before or 1.5 h after antigen challenge blocks allergen- induced LAR and post-antigen-induced AHR in allergic sheep. Multiple treatments with doses of BIO-1211 that were ineffective when given singly, were protective. BIO-1211 also provided dose-dependent inhibition of the early airway response (EAR) to antigen. In conjunction with the functional protection against the antigen-induced LAR and AHR, sheep treated with BIO-1211 before challenge showed significantly reduced: (1) numbers of eosinophils in bronchoalveolar lavage (BAL), (2) BAL levels of the inflammatory marker tissue kallikrein, and (3) numbers of inflammatory cells (lymphocytes, eosinophils, metachromatic staining cells, and neutrophils) in bronchial biopsies obtained after challenge when compared with corresponding biopsies after vehicle treatment. More importantly, we show for the first time that an inhibitor of alpha(4) was able to reverse post-antigen-induced AHR, thereby decreasing the time of recovery from the normal period of > 9 d to 3 d. Our results show that effective inhibition of antigen-induced airway responses can be achieved with single doses of a potent small-molecule inhibitor of alpha(4) and that such agents may be used therapeutically, as well as prophylactically, to alleviate allergen- induced inflammatory events. These data provide further support and extend the evidence for the role of alpha(4) integrins in the pathophysiologic events that follow airway antigen challenge. Topics: Animals; Asthma; Bronchial Hyperreactivity; Bronchoalveolar Lavage Fluid; Carbachol; Eosinophils; Integrin alpha4beta1; Integrin beta1; Integrins; Kallikreins; Oligopeptides; Receptors, Lymphocyte Homing; Receptors, Very Late Antigen; Sheep | 2000 |
Selective, tight-binding inhibitors of integrin alpha4beta1 that inhibit allergic airway responses.
Integrin alpha4beta1 mediates leukocyte recruitment, activation, mediator release, and apoptosis inhibition, and it plays a central role in inflammatory pathophysiology. High-affinity, selective inhibitors of alpha4beta1, based on the Leu-Asp-Val (LDV) sequence from the alternatively spliced connecting segment-1 (CS-1) peptide of cellular fibronectin, are described that employ a novel N-terminal peptide "cap" strategy. One inhibitor, BIO-1211, was approximately 10(6)-fold more potent than the starting peptide and exhibited tight-binding properties (koff = 1.4 x 10(-4) s-1, KD = 70 pM), a remarkable finding for a noncovalent, small-molecule inhibitor of a protein receptor. BIO-1211 was also 200-fold selective for the activated form of alpha4beta1, and it stimulated expression of ligand-induced epitopes on the integrin beta1 subunit, a property consistent with occupancy of the receptor's ligand-binding site. Pretreatment of allergic sheep with a 3-mg nebulized dose of BIO-1211 inhibited early and late airway responses following antigen challenge and prevented development of nonspecific airway hyperresponsiveness to carbachol. These results show that highly selective and potent small-molecule antagonists can be identified to integrins with primary specificity for peptide domains other than Arg-Gly-Asp (RGD); they confirm the generality of integrins as small molecule targets; and they validate alpha4beta1 as a therapeutic target for asthma. Topics: Animals; Anti-Allergic Agents; Binding Sites; Bronchial Hyperreactivity; Carbachol; Cell Adhesion; Cell Line; Drug Design; Epitopes; Fibronectins; Humans; Integrin alpha4beta1; Integrins; Jurkat Cells; Kinetics; Ligands; Oligopeptides; Receptors, Lymphocyte Homing; Sheep; Structure-Activity Relationship; Vascular Cell Adhesion Molecule-1 | 1999 |