biie-0246 has been researched along with Status-Epilepticus* in 2 studies
2 other study(ies) available for biie-0246 and Status-Epilepticus
Article | Year |
---|---|
Neuropeptide Y regulates recurrent mossy fiber synaptic transmission less effectively in mice than in rats: Correlation with Y2 receptor plasticity.
A unique feature of temporal lobe epilepsy is the formation of recurrent excitatory connections among granule cells of the dentate gyrus as a result of mossy fiber sprouting. This novel circuit contributes to a reduced threshold for granule cell synchronization. In the rat, activity of the recurrent mossy fiber pathway is restrained by the neoexpression and spontaneous release of neuropeptide Y (NPY). NPY inhibits glutamate release tonically through activation of presynaptic Y2 receptors. In the present study, the effects of endogenous and applied NPY were investigated in C57Bl/6 mice that had experienced pilocarpine-induced status epilepticus and subsequently developed a robust recurrent mossy fiber pathway. Whole cell patch clamp recordings made from dentate granule cells in hippocampal slices demonstrated that, as in rats, applied NPY inhibits recurrent mossy fiber synaptic transmission, the Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5(4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide (BIIE0246) blocks its action and BIIE0246 enhances synaptic transmission when applied by itself. Y5 receptor agonists had no significant effect. Thus spontaneous release of NPY tonically inhibits synaptic transmission in mice and its effects are mediated by Y2 receptor activation. However, both NPY and BIIE0246 were much less effective in mice than in rats, despite apparently equivalent expression of NPY in the recurrent mossy fibers. Immunohistochemistry indicated greater expression of Y2 receptors in the mossy fiber pathway of normal mice than of normal rats. Pilocarpine-induced status epilepticus markedly reduced the immunoreactivity of mouse mossy fibers, but increased the immunoreactivity of rat mossy fibers. Mossy fiber growth into the inner portion of the dentate molecular layer was associated with increased Y2 receptor immunoreactivity in rat, but not in mouse. These contrasting receptor changes can explain the quantitatively different effects of endogenously released and applied NPY on recurrent mossy fiber transmission in mice and rats. Topics: Animals; Arginine; Benzazepines; Convulsants; Dentate Gyrus; Epilepsy, Temporal Lobe; Glutamic Acid; Immunohistochemistry; Male; Mice; Mice, Inbred C57BL; Mossy Fibers, Hippocampal; Neuronal Plasticity; Neuropeptide Y; Organ Culture Techniques; Patch-Clamp Techniques; Presynaptic Terminals; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Species Specificity; Status Epilepticus; Synaptic Transmission | 2006 |
Spontaneous release of neuropeptide Y tonically inhibits recurrent mossy fiber synaptic transmission in epileptic brain.
In the pilocarpine model of temporal lobe epilepsy, mossy fibers coexpress the inhibitory transmitter neuropeptide Y (NPY) with glutamate. The effects of endogenous and applied NPY on recurrent mossy fiber synaptic transmission were investigated with the use of whole-cell voltage-clamp and field recordings in rat hippocampal slices. Applied NPY reversibly inhibited synaptic transmission at recurrent mossy fiber synapses on dentate granule cells but not at perforant path or associational-commissural synapses. It also reduced the frequency of miniature EPSCs (mEPSCs) in granule cells from epileptic, but not control, rats and depressed granule cell epileptiform activity dependent on the recurrent mossy fiber pathway. These actions of NPY were mediated by activation of presynaptic Y2 receptors. The Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5(4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]argininamide (BIIE0246) not only blocked the effects of NPY but also enhanced recurrent mossy fiber synaptic transmission, the frequency of mEPSCs, and the magnitude of mossy fiber-evoked granule cell epileptiform activity when applied by itself. Several observations supported the selectivity of BIIE0246. These results suggest that even the spontaneous release of NPY (or an active metabolite) from recurrent mossy fibers is sufficient to depress glutamate release from this pathway. Tonic release of NPY accounts at least partially for the low probability of glutamate release from recurrent mossy fiber terminals, impedes the ability of these fibers to synchronize granule cell discharge, and may protect the hippocampus from seizures that involve the entorhinal cortex. This pathway may synchronize granule cell discharge more effectively in human brain than in rat because of its lower expression of NPY. Topics: 2-Amino-5-phosphonovalerate; Animals; Arginine; Benzazepines; Bicuculline; Convulsants; Dentate Gyrus; Excitatory Postsynaptic Potentials; Hippocampus; Male; Mossy Fibers, Hippocampal; Neuropeptide Y; Patch-Clamp Techniques; Perforant Pathway; Pilocarpine; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Receptors, Neuropeptide Y; Status Epilepticus; Synaptic Transmission; Tetrodotoxin | 2005 |