bibp-3226 and Pain

bibp-3226 has been researched along with Pain* in 3 studies

Other Studies

3 other study(ies) available for bibp-3226 and Pain

ArticleYear
Opposing roles of corticotropin-releasing factor and neuropeptide Y within the dorsolateral bed nucleus of the stria terminalis in the negative affective component of pain in rats.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2013, Apr-03, Volume: 33, Issue:14

    Pain is a complex experience composed of sensory and affective components. Although the neural systems of the sensory component of pain have been studied extensively, those of its affective component remain to be determined. In the present study, we examined the effects of corticotropin-releasing factor (CRF) and neuropeptide Y (NPY) injected into the dorsolateral bed nucleus of the stria terminalis (dlBNST) on pain-induced aversion and nociceptive behaviors in rats to examine the roles of these peptides in affective and sensory components of pain, respectively. In vivo microdialysis showed that formalin-evoked pain enhanced the release of CRF in this brain region. Using a conditioned place aversion (CPA) test, we found that intra-dlBNST injection of a CRF1 or CRF2 receptor antagonist suppressed pain-induced aversion. Intra-dlBNST CRF injection induced CPA even in the absence of pain stimulation. On the other hand, intra-dlBNST NPY injection suppressed pain-induced aversion. Coadministration of NPY inhibited CRF-induced CPA. This inhibitory effect of NPY was blocked by coadministration of a Y1 or Y5 receptor antagonist. Furthermore, whole-cell patch-clamp electrophysiology in dlBNST slices revealed that CRF increased neuronal excitability specifically in type II dlBNST neurons, whereas NPY decreased it in these neurons. Excitatory effects of CRF on type II dlBNST neurons were suppressed by NPY. These results have uncovered some of the neuronal mechanisms underlying the affective component of pain by showing opposing roles of intra-dlBNST CRF and NPY in pain-induced aversion and opposing actions of these peptides on neuronal excitability converging on the same target, type II neurons, within the dlBNST.

    Topics: Action Potentials; Affective Symptoms; Analysis of Variance; Aniline Compounds; Animals; Arginine; Corticotropin-Releasing Hormone; Cyclohexanes; Disease Models, Animal; Excitatory Amino Acid Antagonists; Formaldehyde; GABA Antagonists; Hormone Antagonists; Hormones; In Vitro Techniques; Kynurenic Acid; Male; Membrane Potentials; Microdialysis; Neurons; Neuropeptide Y; Pain; Pain Measurement; Peptide Fragments; Pyridazines; Pyrimidines; Rats; Rats, Sprague-Dawley; Septal Nuclei; Xanthenes

2013
Intracerebroventricular administration of 26RFa produces an analgesic effect in the rat formalin test.
    Peptides, 2009, Volume: 30, Issue:9

    GPR103 is one of the orphan G protein-coupled receptors. Recently, an endogenous ligand for GPR103, 26RFa, was identified. Many 26RFa binding sites have been observed in various nuclei of the brain involved in the processing of pain such as the parafascicular thalamic nucleus, the locus coeruleus, the dorsal raphe nucleus, and the parabrachial nucleus. In the present study, the effects of intracerebroventricular injection of 26RFa were tested in the rat. Intracerebroventricular injection of 26RFa significantly decreased the number of both phase 1 and phase 2 agitation behaviors induced by paw formalin injection. This analgesic effect of 26RFa on the phase 1 response, but not phase 2 response, was antagonized by BIBP3226, a mixed antagonist of neuropeptide Y Y1 and neuropeptide FF receptors. Intracerebroventricular injection of 26RFa has no effect in the 52.5 degrees C hot plate test. Intracerebroventricular injection of 26RFa had no effect on the expression of Fos-like immunoreactivity induced by paw formalin injection in the superficial layers of the spinal dorsal horn. These data suggest that (1) 26RFa modulates nociceptive transmission at the supraspinal site during a formalin test, (2) the mechanism 26RFa uses to produce an analgesic effect on the phase 1 response is different from that on the phase 2 response, and (3) intracerebroventricularly injected 26RFa dose not directly inhibit the nociceptive input to the spinal cord.

    Topics: Analgesics, Non-Narcotic; Animals; Anti-Anxiety Agents; Arginine; Formaldehyde; Hot Temperature; Injections, Intraventricular; Male; Narcotic Antagonists; Neuropeptide Y; Neuropeptides; Oligopeptides; Pain; Pain Measurement; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, G-Protein-Coupled; Spinal Cord

2009
Involvement of peripheral neuropeptide Y receptors in sympathetic modulation of acute cutaneous flare induced by intradermal capsaicin.
    Neuroscience, 2004, Volume: 123, Issue:2

    In a recent study, we have demonstrated that the dorsal root reflex (DRR)-mediated acute cutaneous neurogenic inflammation following intradermal injection of capsaicin (CAP) is sympathetically dependent and subject to modulation by peripheral alpha(1)-adrenoceptors. Postganglionic sympathetic neurons contain not only adrenergic neurotransmitters, but also non-adrenergic substances, including neuropeptide Y (NPY). In this study, we examined if peripheral NPY receptors participate in the flare following CAP injection. Different NPY receptor subtypes were studied by using relatively specific agonists and antagonists for the Y(1) and Y(2) subtypes. Changes in cutaneous blood flow on the plantar surface of the foot were measured using a laser Doppler flowmeter. Following CAP injection, cutaneous flare spread more than 20 mm away from the site of CAP injection. Removal of the postganglionic sympathetic nerves by surgical sympathectomy reduced dramatically the CAP-evoked flare. If the foot of sympathectomized rats was pretreated with either NPY or Y(2) receptor agonists by intra-arterial injection, the spread of flare induced by CAP injection could be restored and prolonged. However, if the spinal cord was pretreated with a GABA(A) receptor antagonist, bicuculline, to prevent DRRs, NPY or an Y(2) receptor agonist no longer restored the CAP-evoked flare. A Y(1) receptor agonist did not affect the CAP-evoked flare in sympathectomized rats. In sympathetically intact rats, blockade of either peripheral NPY or Y(2) receptors with [D-Trp(32)]-NPY or BIIE0246 markedly reduced the flare induced by CAP injection, whereas blockade of peripheral Y(1) receptors by BIBP3226 did not obviously affect the flare. It is suggested that NPY is co-released with NE from the postganglionic sympathetic terminals to activate NPY Y(2) and alpha(1) receptors following CAP injection. Both substances are involved, at least in part, in modulation of the responses of CAP sensitive afferents thereby affecting their ability to evoke the release of inflammatory agents from primary afferents.

    Topics: Animals; Arginine; Benzazepines; Bicuculline; Capsaicin; Foot; GABA Antagonists; Inflammation; Injections, Spinal; Laser-Doppler Flowmetry; Male; Pain; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Skin; Spinal Cord; Sympathectomy; Sympathetic Nervous System

2004