bibp-3226 and Alzheimer-Disease

bibp-3226 has been researched along with Alzheimer-Disease* in 2 studies

Other Studies

2 other study(ies) available for bibp-3226 and Alzheimer-Disease

ArticleYear
Nicotine evoked improvement in learning and memory is mediated through NPY Y1 receptors in rat model of Alzheimer's disease.
    Peptides, 2012, Volume: 33, Issue:2

    We investigated the role of endogenous neuropeptide Y (NPY) system in nicotine-mediated improvement of learning and memory in rat model of Alzheimer's disease (AD). Intracerebroventricular (icv) colchicine treatment induced AD-like condition in rats and showed increased escape latency (decreased learning), and amnesic condition in probe test in Morris water maze. In these rats, nicotine (0.5mg/kg, intraperitoneal), NPY (100 ng/rat, icv) or NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY (0.04 ng/rat, icv) decreased escape latency by 54.76%, 55.81% and 44.18%, respectively, on day 4 of the acquisition. On the other hand, selective NPY Y1 receptor antagonist, BIBP3226 (icv) produced opposite effect (44.18%). In the probe test conducted at 24h time point, nicotine, NPY or [Leu(31), Pro(34)]-NPY increased the time spent by 72.72%, 44.11% and 26.47%, respectively; while BIBP3226 caused reduction (8.82%). It seems that while NPY or [Leu(31), Pro(34)]-NPY potentiated, BIBP3226 attenuated the learning and memory enhancing effects of nicotine. Brains of colchicine treated rats showed significant reduction in NPY-immunoreactivity in the nucleus accumbens shell (cells 62.23% and fibers 50%), bed nucleus of stria terminalis (fibers 71.58%), central nucleus of amygdala (cells 74.33%), arcuate nucleus (cells 70.97% and fibers 69.65%) and dentate gyrus (cells 58.54%). However, in these rats nicotine treatment for 4 days restored NPY-immunoreactivity to the control level. We suggest that NPY, perhaps acting via NPY Y1 receptors, might interact with the endogenous cholinergic system and play a role in improving the learning and memory processes in the rats with AD-like condition.

    Topics: Alzheimer Disease; Amygdala; Analysis of Variance; Animals; Arcuate Nucleus of Hypothalamus; Arginine; Colchicine; Dentate Gyrus; Disease Models, Animal; Escape Reaction; Learning; Male; Maze Learning; Memory; Neuropeptide Y; Nicotine; Nicotinic Agonists; Nucleus Accumbens; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Septal Nuclei

2012
Neuropeptide Y fragments derived from neprilysin processing are neuroprotective in a transgenic model of Alzheimer's disease.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2009, Jan-28, Volume: 29, Issue:4

    The endopeptidase neprilysin (NEP) is a major amyloid-beta (Abeta) degrading enzyme and has been implicated in the pathogenesis of Alzheimer's disease. Because NEP cleaves substrates other than Abeta, we investigated the potential role of NEP-mediated processing of neuropeptides in the mechanisms of neuroprotection in vivo. Overexpression of NEP at low levels in transgenic (tg) mice affected primarily the levels of neuropeptide Y (NPY) compared with other neuropeptides. Ex vivo and in vivo studies in tg mice and in mice that received lentiviral vector injections showed that NEP cleaved NPY into C-terminal fragments (CTFs), whereas silencing NEP reduced NPY processing. Immunoblot and mass spectrometry analysis showed that NPY 21-36 and 31-36 were the most abundant fragments generated by NEP activity in vivo. Infusion of these NPY CTFs into the brains of APP (amyloid precursor protein) tg mice ameliorated the neurodegenerative pathology in this model. Moreover, the amidated NPY CTFs protected human neuronal cultures from the neurotoxic effects of Abeta. This study supports the possibility that the NPY CTFs generated during NEP-mediated proteolysis might exert neuroprotective effects in vivo. This function of NEP represents a unique example of a proteolytic enzyme with dual action, namely, degradation of Abeta as well as processing of NPY.

    Topics: Alzheimer Disease; Amyloid beta-Protein Precursor; Animals; Arginine; Benzazepines; Cells, Cultured; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Gene Expression Regulation; Genetic Vectors; Humans; Mice; Mice, Transgenic; Neprilysin; Nerve Degeneration; Nerve Growth Factors; Neurons; Neuropeptide Y; Peptide Fragments; Receptors, Neuropeptide Y

2009