bibo-3457 has been researched along with Obesity* in 4 studies
4 other study(ies) available for bibo-3457 and Obesity
Article | Year |
---|---|
Neuropeptide Y1 receptor antagonism protects β-cells and improves glycemic control in type 2 diabetes.
Loss of functional β-cell mass is a key factor contributing to poor glycemic control in advanced type 2 diabetes (T2D). We have previously reported that the inhibition of the neuropeptide Y1 receptor improves the islet transplantation outcome in type 1 diabetes (T1D). The aim of this study was to identify the pathophysiological role of the neuropeptide Y (NPY) system in human T2D and further evaluate the therapeutic potential of using the Y1 receptor antagonist BIBO3304 to improve β-cell function and survival in T2D.. The gene expression of the NPY system in human islets from nondiabetic subjects and subjects with T2D was determined and correlated with the stimulation index. The glucose-lowering and β-cell-protective effects of BIBO3304, a selective orally bioavailable Y1 receptor antagonist, in high-fat diet (HFD)/multiple low-dose streptozotocin (STZ)-induced and genetically obese (db/db) T2D mouse models were assessed.. In this study, we identified a more than 2-fold increase in NPY1R and its ligand, NPY mRNA expression in human islets from subjects with T2D, which was significantly associated with reduced insulin secretion. Consistently, the pharmacological inhibition of Y1 receptors by BIBO3304 significantly protected β cells from dysfunction and death under multiple diabetogenic conditions in islets. In a preclinical study, we demonstrated that the inhibition of Y1 receptors by BIBO3304 led to reduced adiposity and enhanced insulin action in the skeletal muscle. Importantly, the Y1 receptor antagonist BIBO3304 treatment also improved β-cell function and preserved functional β-cell mass, thereby resulting in better glycemic control in both HFD/multiple low-dose STZ-induced and db/db T2D mice.. Our results revealed a novel causal link between increased islet NPY-Y1 receptor gene expression and β-cell dysfunction and failure in human T2D, contributing to the understanding of the pathophysiology of T2D. Furthermore, our results demonstrate that the inhibition of the Y1 receptor by BIBO3304 represents a potential β-cell-protective therapy for improving functional β-cell mass and glycemic control in T2D. Topics: Animals; Arginine; Diabetes Mellitus, Type 2; Glucose; Glycemic Control; Insulin; Insulin-Secreting Cells; Male; Mice; Mice, Inbred C57BL; Neuropeptide Y; Obesity; Receptors, Neuropeptide Y | 2022 |
Peripheral-specific Y1 receptor antagonism increases thermogenesis and protects against diet-induced obesity.
Obesity is caused by an imbalance between food intake and energy expenditure (EE). Here we identify a conserved pathway that links signalling through peripheral Y1 receptors (Y1R) to the control of EE. Selective antagonism of peripheral Y1R, via the non-brain penetrable antagonist BIBO3304, leads to a significant reduction in body weight gain due to enhanced EE thereby reducing fat mass. Specifically thermogenesis in brown adipose tissue (BAT) due to elevated UCP1 is enhanced accompanied by extensive browning of white adipose tissue both in mice and humans. Importantly, selective ablation of Y1R from adipocytes protects against diet-induced obesity. Furthermore, peripheral specific Y1R antagonism also improves glucose homeostasis mainly driven by dynamic changes in Akt activity in BAT. Together, these data suggest that selective peripheral only Y1R antagonism via BIBO3304, or a functional analogue, could be developed as a safer and more effective treatment option to mitigate diet-induced obesity. Topics: Adipocytes; Adipose Tissue, Brown; Adult; Animals; Arginine; Biopsy; Cells, Cultured; Diet, High-Fat; Disease Models, Animal; Energy Metabolism; Female; Humans; Male; Mice; Middle Aged; Obesity; Primary Cell Culture; Receptors, Neuropeptide Y; Thermogenesis | 2021 |
Sex differences in the sympathoexcitatory response to insulin in obese rats: role of neuropeptide Y.
Intracerebroventricular insulin increased sympathetic nerve activity (SNA) and baroreflex control of SNA and heart rate more dramatically in obese male rats; in obese females, the responses were abolished. In obese males, the enhanced lumbar SNA (LSNA) responses were associated with reduced tonic inhibition of LSNA by neuropeptide Y (NPY) in the PVN. However, PVN NPY injection decreased LSNA similarly in obesity prone/obesity resistant/control rats. Collectively, these results suggest that NPY inputs were decreased. In obese females, NPY inhibition in the PVN was maintained. Moreover, NPY neurons in the arcuate nucleus became resistant to the inhibitory effects of insulin. A high-fat diet did not alter arcuate NPY neuronal InsR expression in males or females. Obesity-induced 'selective sensitization' of the brain to the sympathoexcitatory effects of insulin and leptin may contribute to elevated basal SNA, and therefore hypertension development, in males with obesity. These data may explain in part why obesity increases SNA less in women compared to men.. Obesity increases sympathetic nerve activity (SNA) in men but not women; however, the mechanisms are unknown. We investigated whether intracerebroventricular insulin infusion increases SNA more in obese male than female rats and if sex differences are mediated by changes in tonic inhibition of SNA by neuropeptide Y (NPY) in the paraventricular nucleus (PVN). When consuming a high-fat diet, obesity prone (OP) rats accrued excess fat, whereas obesity resistant (OR) rats maintained adiposity as in rats eating a control (CON) diet. Insulin increased lumbar SNA (LSNA) similarly in CON/OR males and females under urethane anaesthesia. The LSNA response was magnified in OP males but abolished in OP females. In males, blockade of PVN NPY Y1 receptors with BIBO3304 increased LSNA in CON/OR rats but not OP rats. Yet, PVN nanoinjections of NPY decreased LSNA similarly between groups. Thus, tonic PVN NPY inhibition of LSNA may be lost in obese males as a result of a decrease in NPY inputs. By contrast, in females, PVN BIBO3304 increased LSNA similarly in OP, OR and CON rats. After insulin, PVN BIBO3304 failed to increase LSNA in CON/OR females but increased LSNA in OP females, suggesting that with obesity NPY neurons become resistant to the inhibitory effects of insulin. These sex differences were not associated with changes in arcuate NPY neuronal insulin receptor expression. Collectively, these data reveal a marked sex difference in the impact of obesity on the sympathoexcitatory actions of insulin and implicate sexually dimorphic changes in NPY inhibition of SNA in the PVN as one mechanism. Topics: Animals; Arcuate Nucleus of Hypothalamus; Arginine; Baroreflex; Female; Insulin; Male; Neural Inhibition; Neuropeptide Y; Obesity; Paraventricular Hypothalamic Nucleus; Rats; Rats, Sprague-Dawley; Receptors, Neuropeptide Y; Sex Factors; Sympathetic Nervous System | 2019 |
Modest overexpression of neuropeptide Y in the brain leads to obesity after high-sucrose feeding.
Neuropeptide Y (NPY), one of the most abundant peptide transmitters in the mammalian brain, is assumed to play an important role in feeding and body weight regulation. However, there is little genetic evidence that overexpression or knockout of the NPY gene leads to altered body weight regulation. Previously, we developed NPY-overexpressing mice by using the Thy-1 promoter, which restricts NPY expression strictly within neurons in the central nervous system, but we failed to observe the obese phenotype in the heterozygote. Here we report that in the homozygous mice, overexpression of NPY leads to an obese phenotype, but only after appropriate dietary exposure. NPY-overexpressing mice exhibited significantly increased body weight gain with transiently increased food intake after 50% sucrose--loaded diet, and later they developed hyperglycemia and hyperinsulinemia without altered glucose excursion during 1 year of our observation period. Topics: Aging; Animals; Arginine; Brain; Cyclohexanes; Dietary Sucrose; Energy Intake; Homozygote; Humans; Mice; Mice, Knockout; Mice, Transgenic; Neuropeptide Y; Obesity; Phenotype; Promoter Regions, Genetic; Receptors, Neuropeptide Y; Reference Values; Thy-1 Antigens; Xanthenes | 2001 |