bi-2536 and Inflammation

bi-2536 has been researched along with Inflammation* in 1 studies

Other Studies

1 other study(ies) available for bi-2536 and Inflammation

ArticleYear
A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Assay Identifies Nilotinib as an Inhibitor of Inflammation in Acute Myeloid Leukemia.
    Journal of medicinal chemistry, 2022, 09-22, Volume: 65, Issue:18

    Inflammatory responses are important in cancer, particularly in the context of monocyte-rich aggressive myeloid neoplasm. We developed a label-free cellular phenotypic drug discovery assay to identify anti-inflammatory drugs in human monocytes derived from acute myeloid leukemia (AML), by tracking several features ionizing from only 2500 cells using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. A proof-of-concept screen showed that the BCR-ABL inhibitor nilotinib, but not the structurally similar imatinib, blocks inflammatory responses. In order to identify the cellular (off-)targets of nilotinib, we performed thermal proteome profiling (TPP). Unlike imatinib, nilotinib and other later-generation BCR-ABL inhibitors bind to p38α and inhibit the p38α-MK2/3 signaling axis, which suppressed pro-inflammatory cytokine expression, cell adhesion, and innate immunity markers in activated monocytes derived from AML. Thus, our study provides a tool for the discovery of new anti-inflammatory drugs, which could contribute to the treatment of inflammation in myeloid neoplasms and other diseases.

    Topics: Cytokines; Drug Resistance, Neoplasm; Fusion Proteins, bcr-abl; Humans; Imatinib Mesylate; Inflammation; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leukemia, Myeloid, Acute; Protein Kinase Inhibitors; Proteome; Pyrimidines; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

2022