bgp-15 has been researched along with Reperfusion-Injury* in 2 studies
2 other study(ies) available for bgp-15 and Reperfusion-Injury
Article | Year |
---|---|
Effect of poly(ADP-ribose) polymerase inhibitors on the ischemia-reperfusion-induced oxidative cell damage and mitochondrial metabolism in Langendorff heart perfusion system.
Ischemia-reperfusion induces reactive oxygen species (ROS) formation, and ROS lead to cardiac dysfunction, in part, via the activation of the nuclear poly(ADP-ribose) polymerase (PARP, called also PARS and ADP-RT). ROS and peroxynitrite induce single-strand DNA break formation and PARP activation, resulting in NAD(+) and ATP depletion, which can lead to cell death. Although protection of cardiac muscle by PARP inhibitors can be explained by their attenuating effect on NAD(+) and ATP depletion, there are data indicating that PARP inhibitors also protect mitochondria from oxidant-induced injury. Studying cardiac energy metabolism in Langendorff heart perfusion system by (31)P NMR, we found that PARP inhibitors (3-aminobenzamide, nicotinamide, BGP-15, and 4-hydroxyquinazoline) improved the recovery of high-energy phosphates (ATP, creatine phosphate) and accelerated the reutilization of inorganic phosphate formed during the ischemic period, showing that PARP inhibitors facilitate the faster and more complete recovery of the energy production. Furthermore, PARP inhibitors significantly decrease the ischemia-reperfusion-induced increase of lipid peroxidation, protein oxidation, single-strand DNA breaks, and the inactivation of respiratory complexes, which indicate a decreased mitochondrial ROS production in the reperfusion period. Surprisingly, PARP inhibitors, but not the chemically similar 3-aminobenzoic acid, prevented the H(2)O(2)-induced inactivation of cytochrome oxidase in isolated heart mitochondria, suggesting the presence of an additional mitochondrial target for PARP inhibitors. Therefore, PARP inhibitors, in addition to their important primary effect of decreasing the activity of nuclear PARP and decreasing NAD(+) and ATP consumption, reduce ischemia-reperfusion-induced endogenous ROS production and protect the respiratory complexes from ROS induced inactivation, providing an additional mechanism by which they can protect heart from oxidative damages. Topics: Aminobenzoates; Animals; DNA; DNA Damage; Electron Transport Complex IV; Energy Metabolism; Enzyme Inhibitors; Heart; In Vitro Techniques; Lipid Peroxidation; Male; Mitochondria; Myocardium; NAD; Oxidation-Reduction; Oximes; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Quinazolines; Quinazolinones; Rats; Rats, Wistar; Reactive Oxygen Species; Reperfusion Injury | 2001 |
BGP-15, a nicotinic amidoxime derivate protecting heart from ischemia reperfusion injury through modulation of poly(ADP-ribose) polymerase.
The protective effect of O-(3-piperidino-2-hydroxy-1-propyl)nicotinic amidoxime (BGP-15) against ischemia-reperfusion-induced injury was studied in the Langendorff heart perfusion system. To understand the molecular mechanism of the cardioprotection, the effect of BGP-15 on ischemic-reperfusion-induced reactive oxygen species (ROS) formation, lipid peroxidation single-strand DNA break formation, NAD(+) catabolism, and endogenous ADP-ribosylation reactions were investigated. These studies showed that BGP-15 significantly decreased leakage of lactate dehydrogenase, creatine kinase, and aspartate aminotransferase in reperfused hearts, and reduced the rate of NAD(+) catabolism. In addition, BGP-15 dramatically decreased the ischemia-reperfusion-induced self-ADP-ribosylation of nuclear poly(ADP-ribose) polymerase(PARP) and the mono-ADP-ribosylation of an endoplasmic reticulum chaperone GRP78. These data raise the possibility that BGP-15 may have a direct inhibitory effect on PARP. This hypothesis was tested on isolated enzyme, and kinetic analysis showed a mixed-type (noncompetitive) inhibition with a K(i) = 57 +/- 6 microM. Furthermore, BGP-15 decreased levels of ROS, lipid peroxidation, and single-strand DNA breaks in reperfused hearts. These data suggest that PARP may be an important molecular target of BGP-15 and that BGP-15 decreases ROS levels and cell injury during ischemia-reperfusion in the heart by inhibiting PARP activity. Topics: Adenosine Diphosphate; ADP Ribose Transferases; Animals; Carrier Proteins; Cell Nucleus; Cytoplasm; DNA Damage; Endoplasmic Reticulum Chaperone BiP; Heat-Shock Proteins; In Vitro Techniques; Lipid Peroxidation; Male; Molecular Chaperones; NAD; Oximes; Perfusion; Piperidines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Protective Agents; Proteins; Rats; Rats, Wistar; Reactive Oxygen Species; Reperfusion Injury | 2000 |