bgp-15 and Atrial-Fibrillation

bgp-15 has been researched along with Atrial-Fibrillation* in 2 studies

Other Studies

2 other study(ies) available for bgp-15 and Atrial-Fibrillation

ArticleYear
The small-molecule BGP-15 protects against heart failure and atrial fibrillation in mice.
    Nature communications, 2014, Dec-09, Volume: 5

    Heart failure (HF) and atrial fibrillation (AF) share common risk factors, frequently coexist and are associated with high mortality. Treatment of HF with AF represents a major unmet need. Here we show that a small molecule, BGP-15, improves cardiac function and reduces arrhythmic episodes in two independent mouse models, which progressively develop HF and AF. In these models, BGP-15 treatment is associated with increased phosphorylation of the insulin-like growth factor 1 receptor (IGF1R), which is depressed in atrial tissue samples from patients with AF. Cardiac-specific IGF1R transgenic overexpression in mice with HF and AF recapitulates the protection observed with BGP-15. We further demonstrate that BGP-15 and IGF1R can provide protection independent of phosphoinositide 3-kinase-Akt and heat-shock protein 70; signalling mediators often defective in the aged and diseased heart. As BGP-15 is safe and well tolerated in humans, this study uncovers a potential therapeutic approach for HF and AF.

    Topics: Animals; Atrial Fibrillation; Caveolin 1; Caveolin 3; Disease Models, Animal; Electrocardiography; G(M3) Ganglioside; Heart Failure; HSP70 Heat-Shock Proteins; Humans; Male; Mice; Mice, Knockout; Mice, Transgenic; Microarray Analysis; Oximes; Phosphatidylinositol 3-Kinases; Phosphorylation; Piperidines; Proto-Oncogene Proteins c-akt; Receptor, IGF Type 1; Receptors, Somatomedin; Risk Factors; Signal Transduction; Transgenes

2014
Effects of different small HSPB members on contractile dysfunction and structural changes in a Drosophila melanogaster model for Atrial Fibrillation.
    Journal of molecular and cellular cardiology, 2011, Volume: 51, Issue:3

    The most common clinical tachycardia, Atrial Fibrillation (AF), is a progressive disease, caused by cardiomyocyte remodeling, which finally results in contractile dysfunction and AF persistence. Recently, we identified a protective role of heat shock proteins (HSPs), especially the small HSPB1 member, against tachycardia remodeling in experimental AF models. Our understanding of tachycardia remodeling and anti-remodeling drugs is currently hampered by the lack of suitable (genetic) manipulatable in vivo models for rapid screening of key targets in remodeling. We hypothesized that Drosophila melanogaster can be exploited to study tachycardia remodeling and protective effects of HSPs by drug treatments or by utilizing genetically manipulated small HSP-overexpressing strains. Tachypacing of Drosophila pupae resulted in gradual and significant cardiomyocyte remodeling, demonstrated by reduced contraction rate, increase in arrhythmic episodes and reduction in heart wall shortening, compared to normal paced pupae. Heat shock, or pre-treatment with HSP-inducers GGA and BGP-15, resulted in endogenous HSP overexpression and protection against tachycardia remodeling. DmHSP23 overexpressing Drosophilas were protected against tachycardia remodeling, in contrast to overexpression of other small HSPs (DmHSP27, DmHSP67Bc, DmCG4461, DmCG7409, and DmCG14207). (Ultra)structural evaluation of the tachypaced heart wall revealed loss of sarcomeres and mitochondrial damage which were absent in tachypaced DmHSP23 overexpressing Drosophila. In addition, tachypacing induced a significant increase in calpain activity, which was prevented in tachypaced Drosophila overexpressing DmHSP23. Tachypacing of Drosophila resulted in cardiomyocyte remodeling, which was prevented by general HSP-inducing treatments and overexpression of a single small HSP, DmHSP23. Thus, tachypaced D. melanogaster can be used as an in vivo model system for rapid identification of novel targets to combat AF associated cardiomyocyte remodeling.

    Topics: Animals; Atrial Fibrillation; Calpain; Disease Models, Animal; Diterpenes; Drosophila melanogaster; Drosophila Proteins; Gene Expression; Gene Expression Regulation; Heart; Heat-Shock Proteins; Heat-Shock Proteins, Small; Myocardial Contraction; Oximes; Piperidines; Tachycardia

2011