betadex has been researched along with Sarcoma* in 2 studies
2 other study(ies) available for betadex and Sarcoma
Article | Year |
---|---|
Encapsulation of trans-dehydrocrotonin in liposomes: an enhancement of the antitumor activity.
The aim of this study was the encapsulation of trans-dehydrocrotonin (t-DCTN) and its inclusion complexes with hydropropyl-beta-cyclodextrin (HP-beta-CD) in liposomes to improve t-DCTN antitumor activity. The in vitro kinetic profiles of t-DCTN-loaded liposomes (LD) and t-DCTN:HP-beta-CD-loaded liposomes (LC) were evaluated using the dialysis technique. The antitumor activity of LD and LC were investigated against Sarcoma 180 in Swiss mice. Histopathological and hematological analyses were carried out. The amounts of t-DCTN and t-DCTN:HP-beta-CD inclusion complex encapsulated in liposomes were equivalent to 1 mg of t-DCTN. The encapsulation efficiencies of LD and LC were 95.0 +/- 3.8% and 91.1 +/- 5.6%, respectively. In relation to kinetics, the drug release profiles of t-DCTN are in substantial agreement with the Fickian model. The treatment of animals with LD and LC produced tumor inhibitions of 79.4 +/- 9.6% and 63.5 +/- 5.5%, respectively. The liposomal encapsulation of t-DCTN by entrapment in the phospholipid bilayer increased at twice the antitumor activity. Moreover, the liposomal formulations reduced the hepatotoxicity effect of the drug and no significant hematological toxicity was observed in the treated animals. However, the counting of platelets was slightly decreased. Thus, the results show that the development of liposomal formulations containing t-DCTN or t-DCTN:HP-beta-CD is an important advance for enabling this drug to be use in therapy. Topics: 2-Hydroxypropyl-beta-cyclodextrin; Animals; Antineoplastic Agents; beta-Cyclodextrins; Chemistry, Pharmaceutical; Diterpenes, Clerodane; Kinetics; Liposomes; Liver; Male; Mice; Particle Size; Regression Analysis; Sarcoma; Static Electricity | 2013 |
Augmentation of murine lymphokine-activated killer cell cytotoxicity by beta-cyclodextrin-benzaldehyde.
We investigated the effect of beta-cyclodextrin-benzaldehyde (CDBA) on lymphokine-activated killer (LAK) cell activity of spleen cells from normal or RCT(+)H-2(+)-sarcoma-bearing C3H/He mice. CDBA augmented the induction of LAK cytotoxicity in vitro against RCT(+)H-2+ tumor cells by IL-2, whereas the culture with CDBA alone did not. In a LAK cytotoxicity assay in vitro, the augmentative effect of CDBA was strongly exerted against spleen cells originating from 2-week-tumor-bearing mice, rather than those from normal mice or mice that had born tumors for 5 weeks. Such an augmentative effect was not observed against other tumor cells (YAC-1, D-6, Colon-26 and EL-4 cells) non-specifically. When the intravenous adoptive transfer of LAK cells was carried out in the mice, LAK cells from tumor-bearing mice induced by combined culture with interleukin-2 (IL-2) and CDBA markedly inhibited the pulmonary metastases of RCT(+)H-2+ tumor, while neither LAK cells from the same tumor-bearing mice induced by only IL-2 nor those from normal mice inhibited the pulmonary metastasis. The majority of LAK cells induced either by IL-2 plus CDBA or by IL-2 alone were found to be Thy1.2+ and asialoGM1+ cells by flow-cytometric analysis, but no obvious phenotypical difference was observed between them. However, the most significant effect of CDBA might be the maintenance of the Lyt-2+ cell level in the spleen cells from tumor-bearing mice. These results suggested that the costimulation of spleen cells with IL-2 and CDBA might induce cytotoxic T cells specific for syngeneic tumor cells. Topics: Animals; Benzaldehydes; beta-Cyclodextrins; Cyclodextrins; Cytotoxicity, Immunologic; Drug Synergism; Flow Cytometry; Immunotherapy, Adoptive; Interleukin-2; Killer Cells, Lymphokine-Activated; Lung Neoplasms; Male; Mice; Mice, Inbred C3H; Sarcoma | 1991 |