betadex and Sarcoma-180

betadex has been researched along with Sarcoma-180* in 2 studies

Other Studies

2 other study(ies) available for betadex and Sarcoma-180

ArticleYear
Ent-kaurenoic acid-enriched Mikania glomerata leaves-complexed β-cyclodextrin: Pharmaceutical development and in vivo antitumor activity in a sarcoma 180 mouse model.
    International journal of pharmaceutics, 2023, Jan-25, Volume: 631

    The extract obtained from Mikania glomerata leaves rich in ent-kaurenoic acid (ERKA) shows cytotoxic activity in vitro, but its hydrophobic nature and thermosensitivity are issues to be solved prior to in vivo antitumor studies. The purpose of this study was to investigate the antitumor activity of inclusion complexes formed between ERKA and β-cyclodextrin (ERKA:β-CD) in rodents. ERKA:β-CD complexes obtained by malaxation (MX) and co-evaporation (CE) methods were firstly characterized regarding their physical properties, encapsulation efficiency, and cytotoxicity againts L929 cells. The antitumor activity study was then performed in mice with sarcoma 180 treated with saline, 5-fluouracil (5FU) and ERKA:β-CD at 30, 100 and 300 µg/kg. The weight, volume, percentage of inhibition growth, gross and pathological features and positivity for TUNEL, ki67, NFκB and NRF2 in the tumors were assessed. Serum lactate-dehydrogenase activity (LDH), white blood cells count (WBC) and both gross and pathological features of the liver, kidneys and spleen were also evaluated. The formation of the inclusion complexes was confirmed by thermal analysis and FTIR, and they were non-toxic for L929 cells. The MX provided a better complexation efficiency. ERKA:β-CD300 promoted significant tumor growth inhibition, and attenuated the tumor mitotic activity and necrosis content, comparable to 5-fluorouracil. ERKA:β-CD300 also increased TUNEL-detected cell death, reduced Ki67 and NF-kB immunoexpression, and partially inhibited the serum LDH activity. No side effect was observed in ERKA:β-CD300-treated animals. The ERKA:β-CD inclusion complexes at 300 µg/kg displays antitumour activity in mice with low systemic toxicity, likely due to inhibition on the NF-kB signaling pathway and LDH activity.

    Topics: Animals; beta-Cyclodextrins; Drug Development; Ki-67 Antigen; Mice; Mikania; Neoplasms; NF-kappa B; Sarcoma 180

2023
Enhanced anti-tumor effect of 9-nitro-camptothecin complexed by hydroxypropyl-β-cyclodextrin and safety evaluation.
    International journal of pharmaceutics, 2011, Aug-30, Volume: 415, Issue:1-2

    The aim of this study was to evaluate the safety and anti-tumor effect of 9-nitro-camptothecin/hydroxypropyl-β-cyclodextrin (9-NC/HP-β-CD) complex on tumor-bearing mice. The in vitro anti-tumor activity was tested by MTT assay. Our study revealed that the 9-NC/HP-β-CD complex showed significant anti-tumor activity towards Skov-3, MCF-7, HeLa and S180 cell lines with IC(50) values of 0.24 ± 0.09, 0.59 ± 0.20, 0.83 ± 0.11, and 6.30 ± 2.42 μg/ml, respectively, significantly superior to the free 9-NC. The in vivo therapeutic efficacy was investigated in ICR mice bearing mouse sarcoma S180. Both the high (3mg/kg) and low (1mg/kg) doses of 9-NC/HP-β-CD complex demonstrated high inhibition ratio of tumor growth (>75%). The subacute toxicity test was performed by measuring the body weight, histopathology, blood cell counts and clinical chemistry parameters (total bilirubin, alanine transferase, aspartate transferase, blood urea nitrogen and creatinine), and the results indicated the good safety profile of the complex. Taken together, the results suggested that the 9-NC complexed in HP-β-CD, instead of dissolved in the organic solvent, presented significant anti-tumor activity and low toxicity for the treatment of cancer.

    Topics: 2-Hydroxypropyl-beta-cyclodextrin; Adjuvants, Pharmaceutic; Animals; Antineoplastic Agents; beta-Cyclodextrins; Camptothecin; Cell Line, Tumor; Cell Proliferation; Cell Survival; Drug Compounding; Humans; Inhibitory Concentration 50; Mice; Mice, Inbred ICR; Sarcoma 180; Toxicity Tests, Chronic; Xenograft Model Antitumor Assays

2011