betadex has been researched along with Pneumonia* in 4 studies
4 other study(ies) available for betadex and Pneumonia
Article | Year |
---|---|
Supramolecular erythrocytes-hitchhiking drug delivery system for specific therapy of acute pneumonia.
Acute pneumonia is an inflammatory syndrome often associated with severe multi-organ dysfunction and high mortality. The therapeutic efficacy of current anti-inflammatory medicines is greatly limited due to the short systemic circulation and poor specificity in the lungs. New drug delivery systems (DDS) are urgently needed to efficiently transport anti-inflammatory drugs to the lungs. Here, we report an inflammation-responsive supramolecular erythrocytes-hitchhiking DDS to extend systemic circulation of the nanomedicine via hitchhiking red blood cells (RBCs) and specifically "drop off" the payloads in the inflammatory lungs. β-cyclodextrin (β-CD) modified RBCs and ferrocene (Fc) modified liposomes (NP) were prepared and co-incubated to attach NP to RBCs via β-CD/Fc host-guest interactions. RBCs extended the systemic circulation of the attached NP, meanwhile, the NP may get detached from RBCs due to the high ROS level in the inflammatory lungs. In acute pneumonia mice, this strategy delivered curcumin specifically to the lungs and effectively alleviated the inflammatory syndrome. Topics: Animals; beta-Cyclodextrins; Curcumin; Drug Delivery Systems; Erythrocytes; Ferrous Compounds; Liposomes; Metallocenes; Mice; Pneumonia; Reactive Oxygen Species | 2022 |
Inhalable Andrographolide-β-cyclodextrin Inclusion Complexes for Treatment of Staphylococcus aureus Pneumonia by Regulating Immune Responses.
Bacterial pneumonia is a serious disease with high mortality if no appropriate and immediate therapy is available. Andrographolide (AG) is an anti-inflammatory agent extracted from a traditional Chinese herb andrographis paniculata. Oral AG tablets and pills are clinically applied for treatment of upper respiratory tract infections. However, the low solubility and bioavailability of AG lead to high doses and long-term therapy. Here we developed an andrographolide-β-cyclodextrin inclusion complex (AG-β-CD) for inhalation therapy of Staphylococcus aureus pneumonia. AG-β-CD was identified with X-ray diffraction and FT-IR. Surprisingly, both AG-β-CD and AG showed little in vitro anti-S. aureus activity. However, pulmonary delivery of AG, AG-β-CD, or penicillin had significant anti-S. aureus pneumonia effects. Leukocytes, neutrophils, white blood cells, total proteins, TNF-α, IL-6, NF-κB p65 expression, and bacterial colonies in the bronchoalveolar lavage fluids were detected. Pulmonary delivery of AG and AG-β-CD led to bacterial inhibition and inflammation alleviation by regulating immune responses, while penicillin only killed bacteria without significant immune regulation. Moreover, the antipneumonia activity of AG-β-CD was much higher than that of AG, probably resulting from locally accelerated AG dissolution due to β-CD inclusion. The aerodynamic diameter of AG-β-CD powders was 2.03 μm, suitable for pulmonary delivery. Inhalable AG-β-CD is a promising antibacterial and anti-inflammatory medicine for the treatment of S. aureus pneumonia by regulating immune responses, and the effect is enhanced by β-CD inclusion. AG and its formulations might be potent weapons against the resistant bacterial pneumonia due to their specific mechanism in the future. Topics: Animals; Anti-Bacterial Agents; beta-Cyclodextrins; Diterpenes; Immunohistochemistry; Interleukin-6; Leukocytes; Lung; Male; Neutrophils; NF-kappa B; Penicillins; Pneumonia; Rats; Rats, Sprague-Dawley; Spectroscopy, Fourier Transform Infrared; Staphylococcus aureus; Tumor Necrosis Factor-alpha; X-Ray Diffraction | 2017 |
Pulmonary delivery of tea tree oil-β-cyclodextrin inclusion complexes for the treatment of fungal and bacterial pneumonia.
Bacterial pneumonia is a common cause of death worldwide. Tea tree oil (TTO) is a potent antimicrobial natural product, which is formulated in dry powder inhalers (DPIs) for the treatment of fungal and bacterial pneumonia.. Tea tree oil-β-cyclodextrin inclusion complexes (TTO-β-CD) were prepared and characterized. Aerodynamic properties of TTO-β-CD powders were measured. The rat models of fungal (Candida albicans) and bacterial (Acinetobacter baumannii) pneumonia were prepared. Saline, TTO, TTO-β-CD and the positive drug (fluconazole or penicillin) were directly delivered to the rat lungs. Pathological and biological assays were conducted.. Tea tree oil-β-CD powders had an appropriate aerodynamic diameter of 5.59 μm and the fine particle fraction of 51.22%, suitable for pulmonary delivery. TTO-β-CD showed higher and similar antipneumonic effects on the rat models than fluconazole and penicillin, respectively. The effects of TTO-β-CD were higher than TTO alone. The antipneumonic mechanisms involved blocking the recruitment of leucocytes and neutrophils, eliminating the microbes, downregulating pro-inflammatory cytokines (including tumour necrosis factor-α, interleukin-1β and interleukin-6), suppressing cyclooxygenase 2 expression, and further reducing lung injury.. Inhaled TTO-β-CD powders have the advantages of portability, high stability, self-administration, high lung deposition and good antipneumonic effect. It is a promising DPI for the treatment of fungal and bacterial pneumonia. Topics: Acinetobacter baumannii; Acinetobacter Infections; Animals; Anti-Bacterial Agents; Antifungal Agents; beta-Cyclodextrins; Candida albicans; Candidiasis; Disease Models, Animal; Drug Delivery Systems; Fluconazole; Lung; Male; Penicillins; Pneumonia; Pneumonia, Bacterial; Rats; Rats, Sprague-Dawley; Tea Tree Oil; Tissue Distribution | 2017 |
Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways.
The exponential increase in the number of new nanomaterials that are being produced increases the likelihood of adverse biological effects in humans and the environment. In this study we compared the effects of cationic nanoparticles in five different cell lines that represent portal-of-entry or systemic cellular targets for engineered nanoparticles. Although 60 nm NH(2)-labeled polystyrene (PS) nanospheres were highly toxic in macrophage (RAW 264.7) and epithelial (BEAS-2B) cells, human microvascular endothelial (HMEC), hepatoma (HEPA-1), and pheochromocytoma (PC-12) cells were relatively resistant to particle injury. While the death pathway in RAW 264.7 cells involves caspase activation, the cytotoxic response in BEAS-2B cells is more necrotic in nature. Using fluorescent-labeled NH(2)-PS, we followed the routes of particle uptake. Confocal microscopy showed that the cationic particles entered a LAMP-1 positive lysosomal compartment in RAW 264.7 cells from where the particles could escape by lysosomal rupture. A proton pump inhibitor interfered in this pathway. Subsequent deposition of the particles in the cytosol induced an increase in mitochondrial Ca(2+) uptake and cell death that could be suppressed by cyclosporin A (CsA). In contrast, NH(2)-PS toxicity in BEAS-2B cells did not involve the LAMP-1 endosomal compartment, stimulation of proton pump activity, or an increase in mitochondrial Ca(2+). Particles were taken up by caveolae, and their toxicity could be disrupted by cholesterol extraction from the surface membrane. Although the particles induced mitochondrial damage and ATP depletion, CsA did not affect cytotoxicity. Cationic particles were taken up into HEPA-1, HMEC, and PC-12 cells, but this did not lead to lysosomal permeabilization, increased Ca(2+) flux, or mitochondrial damage. Taken together, the results of this study demonstrate the importance of cell-specific uptake mechanisms and pathways that could lead to sensitivity or resistance to cationic particle toxicity. Topics: Amines; Animals; beta-Cyclodextrins; Calcium; Caveolae; Cell Line; Cytotoxins; Endocytosis; Fluorescent Dyes; Humans; Intracellular Space; Lysosomes; Macrolides; Mice; Mitochondria; Nanospheres; Organ Specificity; Permeability; Pneumonia; Polystyrenes | 2008 |