betadex and Periodontal-Pocket
betadex has been researched along with Periodontal-Pocket* in 2 studies
Other Studies
2 other study(ies) available for betadex and Periodontal-Pocket
Article | Year |
---|---|
Meloxicam-loaded solvent exchange-induced in situ forming beta-cyclodextrin gel and microparticle for periodontal pocket delivery.
The in situ forming system has attracted attention for periodontitis treatment owing to its sustainable drug release localisation at a periodontal pocket. Given its low aqueous solubility, beta-cyclodextrin (β-CD) may serve as a matrix former of solvent exchange-induced in situ forming gel (ISG) and microparticle (ISM). Meloxicam (Mex)-loaded-β-CD ISG and ISM were prepared using β-CD in dimethyl sulphoxide (ISG) as the internal phase and camellia oil comprising 5% glyceryl monostearate as the external phase (ISM). Mex-loaded β-CD systems comprising 40% β-CD were easily injected via a 24-gauge needle. During solvent exchange with phosphate buffer saline (pH 6.8), the highly concentrated β-CD ISG promoted the phase inversion of β-CD aggregates into matrix-like. Upon exposure to aqueous phase, the ISM system comprising 40% β-CD transformed into microparticles and extended the drug release to 7 days with minimised initial burst release following Fickian diffusion. Moreover, the potential degradability was evident from the high weight loss. High maximum deformation force with high viscous character initiated the slow diffusion rate of the solvent from the ISM system. Therefore, 40% β-CD ISM is a potential local Mex-controlled release system of anti-inflammatory drug for periodontitis treatment. Topics: beta-Cyclodextrins; Drug Delivery Systems; Humans; Meloxicam; Periodontal Pocket; Solubility; Solvents | 2020 |
A chlorhexidine-loaded biodegradable cellulosic device for periodontal pockets treatment.
Absorbent points widely used in endodontic therapy were transformed into bioresorbable chlorhexidine delivery systems for the treatment of the periodontal pocket by preventing its recolonization by the subgingival microflora. These paper points (PPs) were first oxidized to promote their resorption, then grafted with β-cyclodextrin (CD) or maltodextrin (MD) in order to achieve sustained delivery of chlorhexidine. We investigated the oxidation step parameters through the time of reaction and the nitric and phosphoric acid ratios in the oxidizing mixture, and then the dextrin grafting step parameters through the time and temperature of reaction. A first selection of the appropriate functionalization parameters was undertaken in relation to the degradation profile kinetics of the oxidized (PPO) and oxidized-grafted samples (PPO-CD and PPO-MD). Samples were then loaded with chlorhexidine digluconate (digCHX), a widely used antiseptic agent in periodontal therapy. The release kinetics of digCHX from PPO-CD and PPO-MD samples were compared to PP, PPO and to PerioChip(®) (a commercial digCHX containing gelatine chip) in phosphate buffered saline (pH 7.4) by ultraviolet spectrophotometry. The cytocompatibility of the oxidized-grafted PP was demonstrated by cell proliferation assays. Finally, the disc diffusion test from digCHX loaded PPO-MD samples immersed in human plasma was developed on pre-inoculated agar plates with four common periodontal pathogenic strains: Fusobacterium nucleatum, Prevotella melaninogenica, Aggregatibacter actinomycetem comitans and Porphyromonas gingivalis. To conclude, the optimized oxidized-dextrin-grafted PPs responded to our initial specifications in terms of resorption and digCHX release rates and therefore could be adopted as a reliable complementary periodontal therapy. Topics: Adsorption; Anti-Infective Agents; Bacteria; beta-Cyclodextrins; Biocompatible Materials; Cell Proliferation; Cellulose; Chlorhexidine; Colony Count, Microbial; Humans; Kinetics; Microscopy, Electron, Scanning; Oxidation-Reduction; Periodontal Pocket; Polysaccharides; Thermogravimetry | 2014 |