betadex and Bone-Neoplasms

betadex has been researched along with Bone-Neoplasms* in 3 studies

Other Studies

3 other study(ies) available for betadex and Bone-Neoplasms

ArticleYear
Doxorubicin and CD‑CUR inclusion complex co‑loaded in thermosensitive hydrogel PLGA‑PEG‑PLGA localized administration for osteosarcoma.
    International journal of oncology, 2020, Volume: 57, Issue:2

    Combination therapy is a promising and prevalent strategy for osteosarcoma treatment. Curcumin (CUR), as a chemosensitizer, improves the antitumor effect of first‑line chemotherapy drugs. However, due to its poor solubility and instability in physiological conditions, the bioavailability of CUR is limited. In order to improve the physicochemical properties of natural CUR, β‑cyclodextrin was adopted to generate a β‑cyclodextrin curcumin (CD‑CUR) inclusion complex. A thermosensitive hydrogel, poly(D,L‑lactide‑co‑glycolide)-poly(ethylene‑glycol)‑poly(D,L‑lactide‑co‑glycolide), was selected and synthesized to co‑deliver doxorubicin (DOX) and CD‑CUR to tumor sites. The dual‑drug delivery system (gel+DOX+CD‑CUR) was prepared by mixing drugs with hydrogels and had a perfect sol‑gel phase transition temperature (18.3˚C for 20% concentration). Both DOX and CUR were released from hydrogels in a sustained manner in PBS (pH 7.4) medium. The combination therapy based on DOX+CD‑CUR exhibited higher antitumor activity than monotherapies in vitro. Combined CD‑CUR therapy significantly downregulated Bcl‑2 expression and upregulated caspase‑3 expression, suggesting that DOX combined with CD‑CUR treatment has a higher apoptosis‑inducing efficiency. The antitumor efficiency of the gel+DOX+CD‑CUR strategy was evaluated in K‑7 tumor‑bearing mice, and this localized combination therapy demonstrated a higher antitumor efficiency compared with free DOX+CD‑CUR or single‑drug strategies. There were no significant differences in body weight and histological changes of major organs in each group. Therefore, the present combination treatment based on hydrogel may be a feasible approach to co‑deliver DOX and CD‑CUR to osteosarcoma tumor sites in clinical practice.

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; beta-Cyclodextrins; Bone Neoplasms; Cell Line, Tumor; Curcumin; Disease Models, Animal; Doxorubicin; Drug Carriers; Drug Compounding; Feasibility Studies; Female; Humans; Hydrogels; Injections, Intralesional; Mice; Nanoparticles; Osteosarcoma; Polyesters; Polyethylene Glycols

2020
Nanostructured polyelectrolyte multilayer drug delivery systems for bone metastasis prevention.
    Biomaterials, 2009, Volume: 30, Issue:31

    Polyelectrolyte multilayers (PEM) are well established nanoarchitectures with numerous potential applications, in particular as biomaterial coatings. They may exhibit specific biological properties in terms of controlled cell activation or local drug delivery. Here, in a new approach for bone metastasis prevention, we employed poly-l-lysine covalently grafted with beta-cyclodextrin as a polycationic vector (PLL-CD) for the antitumor bisphosphonate drug risedronate (RIS). Molar ratio for maximum loading of the PLL-CD vector with RIS was determined by Raman microspectroscopy. The efficacy of RIS at inhibiting cancer cell invasion in vitro was strongly enhanced upon complexation, whatever PLL-CD:RIS complexes were in solution or embedded into PEM nanoarchitectures. Complexes in solution also clearly prevented cancer-induced bone metastasis in animals. Incorporation of the complexes into PEM nanoarchitectures covering bone implants appears of interest for in situ prevention of bone metastasis after ablation.

    Topics: Animals; Antinematodal Agents; beta-Cyclodextrins; Bone Neoplasms; Drug Delivery Systems; Etidronic Acid; Female; Mice; Mice, Inbred BALB C; Nanostructures; Neoplasm Metastasis; Risedronic Acid; Spectrum Analysis, Raman

2009
A glycine ruthenium trithiacyclononane complex and its molecular encapsulation using cyclodextrins.
    Dalton transactions (Cambridge, England : 2003), 2009, Nov-28, Issue:44

    The complex Ru([9]aneS(3))(gly)Cl (gly = glycine) was obtained from the reaction of the precursor Ru([9]aneS(3))dmsoCl(2) with glycine and encapsulated into native beta-CD, a hydroxypropylated derivative HPbetaCD, and the methylated cyclodextrins TRIMEB and CRYSMEB. All four inclusion compounds were obtained with a 1:1 host:guest stoichiometry and characterised in the solid-state by powder X-ray diffraction, thermogravimetric analysis (TGA), and (13)C{(1)H} CP/MAS NMR and FTIR spectroscopies. The cytostatic and antiproliferative activity of the complex Ru([9]aneS(3))(gly)Cl and its four CD inclusion compounds was tested on the human osteosarcoma MG-63 cell line and the results compared to the inhibitory effect exerted by the pure cyclodextrins.

    Topics: Antineoplastic Agents; beta-Cyclodextrins; Bone Neoplasms; Cell Line, Tumor; Cell Proliferation; Coordination Complexes; Glycine; Humans; Osteosarcoma

2009