beta-hydroxymyristic acid has been researched along with Cardiomyopathies in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 3 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Amaral, AU; Busanello, EN; Gasparotto, J; Gelain, DP; Gregersen, N; Tonin, AM; Wajner, M | 1 |
Amaral, AU; Cecatto, C; Hickmann, FH; Rodrigues, MD; Wajner, M | 1 |
Amaral, AU; Cecatto, C; da Silva, JC; Godoy, KDS; Wajner, M | 1 |
3 other study(ies) available for beta-hydroxymyristic acid and Cardiomyopathies
Article | Year |
---|---|
Mitochondrial bioenergetics deregulation caused by long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies in rat brain: a possible role of mPTP opening as a pathomechanism in these disorders?
Topics: 3-Hydroxyacyl CoA Dehydrogenases; Acyl-CoA Dehydrogenase, Long-Chain; Adenosine Triphosphate; Animals; Calcium; Cardiomyopathies; Cerebral Cortex; Cytochromes c; Energy Metabolism; Homeostasis; Hydrogen Peroxide; Lauric Acids; Lipid Metabolism, Inborn Errors; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Membrane Transport Proteins; Mitochondrial Myopathies; Mitochondrial Permeability Transition Pore; Mitochondrial Swelling; Mitochondrial Trifunctional Protein; Myristic Acids; NADP; Nervous System Diseases; Oxidants; Palmitic Acids; Rats; Rats, Wistar; Rhabdomyolysis | 2014 |
Deregulation of mitochondrial functions provoked by long-chain fatty acid accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart--mitochondrial permeability transition pore opening as
Topics: Adenosine Triphosphate; Animals; Calcium Channel Blockers; Calcium Signaling; Cardiomyopathies; Cell Membrane Permeability; Enzyme Inhibitors; Humans; Lipid Metabolism, Inborn Errors; Long-Chain-3-Hydroxyacyl-CoA Dehydrogenase; Membrane Potential, Mitochondrial; Mitochondria, Heart; Mitochondrial Membrane Transport Proteins; Mitochondrial Membranes; Mitochondrial Myopathies; Mitochondrial Permeability Transition Pore; Mitochondrial Swelling; Mitochondrial Trifunctional Protein; Myristic Acids; NADP; Nervous System Diseases; Organ Specificity; Oxidative Phosphorylation; Palmitic Acids; Rats, Wistar; Rhabdomyolysis | 2015 |
Disturbance of mitochondrial functions provoked by the major long-chain 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies in skeletal muscle.
Topics: Animals; Calcium; Cardiomyopathies; Lipid Metabolism, Inborn Errors; Membrane Potential, Mitochondrial; Mitochondria, Muscle; Mitochondrial Myopathies; Mitochondrial Trifunctional Protein; Muscle, Skeletal; Myristic Acids; NADP; Nervous System Diseases; Oxygen Consumption; Palmitic Acids; Rats, Wistar; Rhabdomyolysis | 2016 |