beta-escin and Infarction--Middle-Cerebral-Artery

beta-escin has been researched along with Infarction--Middle-Cerebral-Artery* in 3 studies

Other Studies

3 other study(ies) available for beta-escin and Infarction--Middle-Cerebral-Artery

ArticleYear
Escin alleviates stress-induced intestinal dysfunction to protect brain injury by regulating the gut-brain axis in ischemic stroke rats.
    International immunopharmacology, 2023, Volume: 115

    Hyperactivity of HPA axis results in intestinal dysfunction, which may play a role in brain injury caused by ischemic stroke (IS). Escin shows a neuroprotective effect but it may not penetrate blood brain barrier (BBB). Previous work in our laboratory showed that escin ameliorated intestinal injury in animals. The aim of this study is to investigate whether escin attenuates brain injury by improving intestinal dysfunction in middle cerebral artery occlusion (MCAO) rats, to mimic IS. MCAO rats and lipopolysaccharides (LPS)-induced Caco-2 cells were used to evaluate the effects of escin in vivo and in vitro. The results showed that escin could not penetrate BBB but reduced brain infarct volume, improved neurological function, inhibited neuroinflammation, ameliorated intestinal dysfunction and tissue integrity by increasing the expression of the tight junction protein in vivo and in vitro. Escin reduced the increased corticosterone and endotoxin level in blood of MCAO rats, regulated GR/p38 MAPK/NF-κB signaling pathway in ileal tissue and LPS/TLR4/NF-κB signaling pathway in ischemic brain tissue. These findings suggest that escin could attenuate ischemic brain injury by improving intestinal dysfunction, and it may be a promising way to protect brain injury by protecting intestine, instead of targeting the brain directly after IS.

    Topics: Animals; Brain Injuries; Brain Ischemia; Brain-Gut Axis; Caco-2 Cells; Escin; Gastrointestinal Diseases; Humans; Hypothalamo-Hypophyseal System; Infarction, Middle Cerebral Artery; Intestinal Diseases; Ischemic Stroke; Lipopolysaccharides; NF-kappa B; Pituitary-Adrenal System; Rats; Reperfusion Injury; Stroke

2023
Effects of sodium beta-aescin on expression of adhesion molecules and migration of neutrophils after middle cerebral artery occlusion in rats.
    Acta pharmacologica Sinica, 2004, Volume: 25, Issue:7

    To investigate the effects of sodium beta-aescin on neutrophil migration and expression of adhesion molecules (ICAM-1 and E-selectin) after middle cerebral artery occlusion (MCAO) in rats.. Rats were pretreated with sodium beta-aescin for 7 d and then subjected to cerebral ischemia/reperfusion (I/R) injury induced by an MCAO. After a 2-h ischemia and a 24-h reperfusion, the infarct volume and neurological deficit were determined by the method of TTC staining and the Longa's score. The effect of sodium beta-aescin on the migration of neutrophils was evaluated by measuring the activity of myeloperoxidase (MPO) enzyme. The expressions of adhesion molecules were determined by immunohistochemistry and Western blot.. Sodium beta-aescin significantly reduced the cerebral infarct volume and ameliorated the neurological deficit (P<0.05 or P<0.01). The MPO activity and the expressions of ICAM-1 and E-selectin in the vehicle-treated rats were increased significantly (P<0.01) after cerebral I/R. After treatment with sodium beta-aescin, the enzymatic activity of MPO and the expressions of these adhesion molecules were significantly reduced compared with the vehicle-treated group (P<0.05 or P<0.01).. Sodium beta-aescin can attenuate brain injury, down-regulate the protein expressions of ICAM-1 and E-selectin, and reduce the migration of neutrophils after cerebral I/R.

    Topics: Aesculus; Animals; Cell Movement; Cerebral Infarction; Down-Regulation; E-Selectin; Escin; Infarction, Middle Cerebral Artery; Intercellular Adhesion Molecule-1; Male; Neuroprotective Agents; Neutrophils; Peroxidase; Plants, Medicinal; Rats; Rats, Sprague-Dawley; Reperfusion Injury

2004
Effects of beta-aescin on apoptosis induced by transient focal cerebral ischemia in rats.
    Acta pharmacologica Sinica, 2004, Volume: 25, Issue:10

    To investigate the effects of beta-aescin on apoptosis induced by transient focal brain ischemia in rats.. Rats were pretreated with beta-aescin for 7 d and then subjected to brain ischemia/reperfusion (I/R) injury induced by a middle cerebral artery occlusion. After 2 h ischemia and 24 h reperfusion, Hematoxylin-Eosin (HE) staining, in situ end-labeling of nuclear DNA fragmentation (TUNEL) were employed to determine the level of apoptosis. The expressions of caspase-3 and Bcl-2 in the cortex were determined by immunohistochemistry and Western blot. The release of cytochrome c was analyzed by Western blot.. The increased numbers of HE- and TUNEL-positive staining cells were significantly observed at 24 h after reperfusion. The immunoreactivity was inhibited by beta-aescin (30, 60 mg/kg) (P<0.01 or P<0.05 vs vehicle-treated). After cerebral I/R, cytochrome c was released into the cytosol and caspase-3 was activated, whereas Bcl-2 expression was inhibited. beta-Aescin (30, 60 mg/kg) markedly inhibited the expression of caspase-3 and the release of cytochrome c, and up-regulated the expression of Bcl-2 (P<0.05, P<0.01 vs vehicle-treated).. beta-Aescin could potently inhibit caspase-3 activation and the release of cytochrome c, increasing the expression of Bcl-2 after cerebral I/R in rats. These findings on the inhibitory effects of beta-aescin on brain ischemic injury-induced apoptosis might have important theoretical basis for the treatment on ischemic cerebrovascular diseases.

    Topics: Animals; Apoptosis; Brain Ischemia; Caspase 3; Caspases; Cerebral Cortex; Cytochromes c; Escin; Infarction, Middle Cerebral Artery; Male; Mitochondria; Neuroprotective Agents; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; Reperfusion Injury

2004