beta-elemene and Colonic-Neoplasms

beta-elemene has been researched along with Colonic-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for beta-elemene and Colonic-Neoplasms

ArticleYear
β-Elemene regulates epithelial-mesenchymal transformation and inhibits invasion and metastasis of colorectal cancer cells.
    Journal of complementary & integrative medicine, 2023, Jun-01, Volume: 20, Issue:2

    To study the inhibitory effect of β-elemene on invasion and metastasis of colorectal cancer cells and its possible mechanism.. Human colon cancer HCT116 cells were treated with different concentrations of β-elemene. The proliferation inhibition rate of the cells was detected by MTT assay, cell migration rate was detected by scratched assay, and cell invasion rate was evaluated by Transwell cell invasion assay. The expressions of Vimentin, E-cadherin, N-cadherin, and β-catenin were detected by Western blotting. The mRNA expressions of Vimentin, E-cadherin, N-cadherin, and β-catenin were detected by real-time PCR.. Compared with the control group, the expressions of migration rate, invasion rate, scratch healing rate, N-cadherin, and Vimentin protein of HCT116 cells were decreased after β-elemene treatment, while the expression of E-cadherin protein was increased, and the inhibition rate of cell proliferation was increased (p<0.05).. β-Elemene may inhibit cell proliferation and invasion and metastasis by inhibiting EMT signaling pathway in human colon cancer cell line HCT116.

    Topics: beta Catenin; Cadherins; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; Epithelial-Mesenchymal Transition; Humans; Vimentin

2023
Antineoplastic effect of beta-elemene on prostate cancer cells and other types of solid tumour cells.
    The Journal of pharmacy and pharmacology, 2010, Volume: 62, Issue:8

    beta-Elemene, a natural compound extracted from over 50 different Chinese medicinal herbs and plants, has been effective in the treatment of hyperplastic and proliferative disorders such as prostatic hypertrophy, hysteromyoma and neoplasms. Our previous studies have demonstrated that beta-elemene exhibits strong inhibitory activity in ovarian cancer cells. The aim of the present study was to assess the effect of beta-elemene on prostate cancer cells as well as other types of tumour cells and to determine whether the effect of beta-elemene on prostate cancer cell death was mediated through the induction of apoptosis.. The MTT assay was used to evaluate the ability of beta-elemene to inhibit cellular proliferation in cancer cells. Cellular apoptosis was assessed by annexin V binding, TUNEL and ELISA-based assays. Caspase activity was measured using a caspases assay kit. The protein levels of Bcl-2, caspases, cytochrome c and poly(ADP-ribose) polymerase (PARP) were analysed by Western blotting.. Here, we showed that beta-elemene had an antiproliferative effect on androgen-insensitive prostate carcinoma DU145 and PC-3 cells. Treatment with beta-elemene also inhibited the growth of brain, breast, cervical, colon and lung carcinoma cells. The effect of beta-elemene on cancer cells was dose dependent, with IC50 values ranging from 47 to 95 microg/ml (230-465 microm). TUNEL assay and flow cytometric analysis using annxin V/propidium iodide staining revealed that the percentage of apoptotic prostate cancer cells was increased by beta-elemene in a dose- and time-dependent manner. Moreover, beta-elemene exposure resulted in a decreased Bcl-2 protein level, increased cytochrome c release, and activated PARP and caspase-3, -7, -9, and -10 in prostate cancer cells.. Overall, these findings suggest that beta-elemene exerts broad-spectrum antitumour activity against many types of solid carcinoma and supports a proposal of beta-elemene as a new potentially therapeutic drug for castration-resistant prostate cancer and other solid tumours.

    Topics: Annexin A5; Antineoplastic Agents, Phytogenic; Apoptosis; Blotting, Western; Brain Neoplasms; Breast Neoplasms; Caspases; Cell Line, Tumor; Cell Proliferation; Cell Survival; Colonic Neoplasms; Cytochromes c; Dose-Response Relationship, Drug; Enzyme-Linked Immunosorbent Assay; Female; Humans; In Situ Nick-End Labeling; Inhibitory Concentration 50; Lung Neoplasms; Male; Poly(ADP-ribose) Polymerases; Prostatic Neoplasms; Proto-Oncogene Proteins c-bcl-2; Sesquiterpenes; Time Factors; Uterine Cervical Neoplasms

2010